Под жизненным циклом программного обеспечения понимается. Жизненный цикл программных систем. Жизненный цикл ПО. Стадии и этапы

Аннотация.

Введение.

1. Жизненный цикл ПО

Введение.

Шаги процесса программирования по Райли

Введение.

1.1.1. Постановка задачи.

1.1.2. Проектирование решения.

1.1.3. Кодирование алгоритма.

1.1.4. Сопровождение программы.

1.1.5. Программная документация.

Вывод к п. 1.1

1.2. Определение ЖЦПО по Леману.

Введение.

1.2.1 Определение системы.

1.2.2. Реализация.

1.2.3. Обслуживание.

Вывод к п. 1.2.

1.3. Фазы и работы ЖЦПО по Боэму

1.3.1. Каскадная модель.

1.3.2. Экономическое обоснование каскадной модели.

1.3.3. Усовершенствование каскадной модели.

1.3.4. Определение фаз жизненного цикла.

1.3.5. Основные работы над проектом.

Литература.


Введение

Промышленное применение компьютеров и растущий спрос на программы поставили актуальные задачи существенного повышения производительности разработки ПО , разработки индустриальных методов планирования и проектирования программ, переноса организационно-технических, технико-экономических и социально-психологических приемов, закономерностей и методов из сферы материального производства в сферу применения компьютеров. Комплексный подход к процессам разработки, эксплуатации и сопровождения ПО выдвинул ряд насущных проблем, решение которых исключит «узкие места» в проектировании программ, уменьшит сроки завершения работ, улучшит выбор и адаптацию существующих программ, а может быть и определит судьбу систем со встроенными ЭВМ.

В практике разработок больших программных проектов зачастую отсутствует единый подход к оцениванию затрат труда, сроков проведения работ и материальных затрат, что сдерживает повышение производительности разработки ПО, а в конечном счете – эффективное управление жизненным циклом ПО. Поскольку программа любого типа становится изделием (кроме, может быть, учебных, макетных программ), подход к ее изготовлению во многом должен быть аналогичен подходу к производству промышленной продукции, и вопросы проектирования программ становятся чрезвычайно важными. Эта идея лежит в основе книги Б.У. Боэма «Инженерное проектирование программного обеспечения», которую мы использовали при написании данной курсовой работы. В этой книге под проектированием ПО понимается процесс создания проекта программного изделия.


1 Жизненный цикл ПО

ВВЕДЕНИЕ

ЖЦПО – это непрерывный процесс, который начинается с момента принятия решения о необходимости создания ПО и заканчивается в момент его полного изъятия из эксплуатации.

Существует несколько подходов при определении фаз и работ жизненного цикла программного обеспечения (ЖЦПО), шагов процесса программирования, каскадная и спиральная модели. Но все они содержат общие основополагающие компоненты: постановка задачи, проектирование решения, реализация, обслуживание.

Наиболее известной и полной, пожалуй, является структура ЖЦПО по Боэму, включающая восемь фаз. Она и будет представлена в дальнейшем наиболее подробно.

Одним из возможных вариантов может послужить описание верхнего уровня по Леману, включающее три основные фазы и представляющее описание ЖЦПО в самом общем случае.

И, для разнообразия, – приведем шаги процесса программирования, представленные Д.Райли в книге «Использование языка Модула-2». Это представление, по-моему, является весьма простым и привычным, с него и начнём.

1.1 Шаги процесса программирования по Райли

Процесс программирования включает четыре шага (рис. 1):

постановка задачи, т.е. получение адекватного представления о том, какую задачу должна выполнить программа;

проектирование решения уже поставленной задачи (в общем, такое решение является менее формальным, чем окончательная программа);

кодирование программы, т. е. перевод спроектированного решения в программу, которая может быть выполнена на машине;

сопровождение программы, т.е. непрекращающийся процесс устранения в программе неполадок и добавления новых возможностей.

Рис. 1.Четыре шага программирования.

Программирование начинается с того момента, когда пользователь , т.е. тот, кто нуждается в программе для решения задачи, излагает проблему системному аналитику. Пользователь и системный аналитик совместно определяют постановку задачи. Последняя затем передается алгоритмисту , который отвечает за проектирование решения. Решение (или алгоритм) представляет последовательность операций, выполнение которых приводит к решению задачи. Поскольку алгоритм часто не приспособлен к выполнению на машине, его следует перевести в машинную программу. Эта операция выполняется кодировщиком. За последующие изменения в программе несет ответственность сопровождающийпрограммист. И системный аналитик, и алгоритмист, и кодировщик, и сопровождающий программист – все они являются программистами.

В случае большого программного проекта число пользователей, системных аналитиков и алгоритмистов может оказаться значительным. Кроме того, может возникнуть необходимость вернуться к предшествующим шагам в силу непредвиденных обстоятельств. Все это служит дополнительным аргументом в пользу тщательного проектирования программного обеспечения: результаты каждого шага должны быть полными, точными и понятными.

1.1.1 Постановка задачи

Одним из наиболее важных шагов программирования является постановка задачи. Она выполняет функции контракта между пользователем и программистом (программистами). Как и юридически плохо составленный контракт, плохая постановка задачи бесполезна. При хорошей постановке задачи как пользователь, так и программист ясно и недвусмысленно представляют задачу, которую необходимо выполнить, т.е. в этом случае учитываются интересы как пользователя, так и программиста. Пользователь может планировать использование еще несозданного программного обеспечения, опираясь на знание того, что оно может. Хорошая постановка задачи служит основой для формирования ее решения.

Постановка задачи (спецификация программы ); по существу, означает точное, полное и понятное описание того, что происходит при выполнении конкретной программы. Пользователь обычно смотрит на компьютер, как на черный ящик: для него неважно, как работает компьютер, а важно, что может компьютер из того, что интересует пользователя. При этом основное внимание фокусируется на взаимодействии человека с машиной.

Характеристики Хорошей Постановки Задачи:

Точность , т.е. исключение любой неоднозначности. Не должно возникать вопросов относительно того, каким будет вывод программы при каждом конкретном вводе.

Полнота , т.е. рассмотрение всех вариантов для заданного ввода, включая ошибочный или непредусмотренный ввод, и определение соответствующего вывода.

Ясность , т.е. она должна быть понятной и пользователю и системному аналитику, поскольку постановка задачи – это единственный контракт между ними.

Часто требование точности, полноты и ясности находятся в противоречии. Так, многие юридические документы трудно понять, потому что они написаны на формальном языке, который позволяет предельно точно сформулировать те или иные положения, исключая любые самые незначительные разночтения. Например, некоторые вопросы в экзаменационных билетах иногда сформулированы настолько точно, что студент тратит больше времени на то, чтобы понять вопрос, чем на то чтобы на него ответить. Более того, студент вообще может не уловить основной смысл вопроса из-за большого количества деталей. Наилучшая постановка задачи та, при которой достигается баланс всех трех требований.

Стандартная форма постановки задачи.

Рассмотрим следующую постановку задачи: «Ввести три числа и вывести числа в порядке».

Такая постановка не удовлетворяет приведенным выше требованиям: она не является ни точной, ни полной, ни понятной. Действительно, должны ли числа вводиться по одному на строке или все числа на одной строке? Означает ли выражение «в порядке» упорядочение от большего к меньшему, от меньшего к большему или тот же порядок, в каком они были введены.

Очевидно, что подобная постановка не отвечает на множество вопросов. Если же учесть ответы на все вопросы, то постановка задачи станет многословной и трудной для восприятия. Поэтому Д. Райли предлагает для постановки задачи пользоваться стандартной формой, которая обеспечивает максимальную точность, полноту, ясность и включает:

наименование задачи (схематическое определение);

общее описание (краткое изложение задачи);

ошибки (явно перечислены необычные варианты ввода, чтобы показать пользователям и программистам те действия, которые предпримет машина в подобных ситуациях);

пример (хороший пример может передать сущность задачи, а также проиллюстрировать различные случаи).

Пример. Постановка задачи в стандартной форме.

НАЗВАНИЕ

Сортировка трех целых чисел.

ОПИСАНИЕ

Ввод и вывод трех целых чисел, отсортированных от меньшего числа к большему.

Вводятся три целых числа по одному числу на строке. При этом целым числом является одна или несколько последовательных десятичных цифр, которым может предшествовать знак плюс «+» или знак минус «–».

Выводятся три введенных целых числа, причем все три выводятся на одной строке. Смежные числа разделяются пробелом. Числа выводятся от меньшего к большему, слева направо.

1) Если введено менее трех чисел, программа ждет дополнительного ввода.

ЖЦ ПО – период времени, который начинается с момента принятия решения о необходимости создания программного продукта и заканчивается в момент его полного изъятия из эксплуатации.

Процессы ЖЦ ПО:

Основные,

Вспомогательные,

Организационные.


Основные:

1. Приобретение – действия и задачи заказчика, приобретающего ПО;

2. Поставка – действия и задачи поставщика, который снабжает заказчика программным продуктом или услугой;

3. Разработка – действия и задачи, выполняемые разработчиком: создание ПО, оформление проектной и эксплуатационной документации, подготовка тестовых и учебных материалов;

4. Эксплуатация – действия и задачи оператора организации, эксплуатирующей систему;

5. Сопровождение – внесение изменений в ПО в целях исправления ошибок, повышения производительности или адаптации к изменившимся условиям работы или требованиям.

Вспомогательные:

1. Документирование – формализованное описание информации, созданной в течение ЖЦ ПО;

2. Управление конфигурацией– применение административных и технических процедур на всем протяжении ЖЦ ПО для определения состояния компонентов ПО, управления его модификациями;

3. Обеспечение качества– обеспечение гарантий того, что ПО и процессы ее ЖЦ соответствуют заданным требованиям и утвержденным планам;

4. Верификация – определение того, что программные продукты полностью удовлетворяют требованиям или условиям, обусловленным предшествующими действиями;

5. Аттестация – определение полноты соответствия заданных требований и созданной системы их конкретному функциональному назначению;

6. Совместная оценка– оценка состояния работ по проекту: контроль планирования и управления ресурсами, персоналом, аппаратурой, инструментальными средствами;

7. Аудит – определение соответствия требованиям, планам и условиям договора;

8. Разрешение проблем– анализ и решение проблем, независимо от их происхождения или источника, которые обнаружены в ходе разработки, эксплуатации, сопровождения или других процессов.

Организационные:

1. Управление – действия и задачи, которые могут выполняться любой стороной, управляющей своими процессами;

2. Создание инфраструктуры– выбор и сопровождение технологии, стандартов и инструментальных средств, выбор и установка аппаратных и программных средств, используемых для разработки, эксплуатации или сопровождения ПО;

3. Усовершенствование – оценка, измерение, контроль и усовершенствование процессов ЖЦ;

4. Обучение – первоначальное обучение и последующее постоянное повышение квалификации персонала.

В 2002 г. был опубликован стандарт на процессы жизненного цикла систем (ISO/IEC 15288 System life cycle processes). К разработке стандарта были привлечены специалисты различных областей: системной инженерии, программирования, управления качеством, человеческими ресурсами, безопасностью и пр. Был учтен практический опыт создания систем в правительственных, коммерческих, военных и академических организациях. Стандарт применим для широкого класса систем, но его основное предназначение – поддержка создания компьютеризированных систем.



Согласно стандарту ISO/IEC серии 15288 в структуру ЖЦ следует включать следующие группы процессов:

1. Договорные процессы:

Приобретение (внутренние решения или решения внешнего поставщика);

Поставка (внутренние решения или решения внешнего поставщика);

2. Процессы предприятия:

Управление окружающей средой предприятия;

Инвестиционное управление;

Управление ЖЦ ИС;

Управление ресурсами;

Управление качеством;

3. Проектные процессы:

Планирование проекта;

Оценка проекта;

Контроль проекта;

Управление рисками;

Управление конфигурацией;

Управление информационными потоками;

Принятие решений.

4. Технические процессы:

Определение требований;

Анализ требований;

Разработка архитектуры;

Внедрение;

Интеграция;

Верификация;

Переход;

Аттестация;

Эксплуатация;

Сопровождение;

Утилизация.

5. Специальные процессы:

Определение и установка взаимосвязей исходя из задач и целей.


Создание основных процессов ЖЦ ПО по ИС (ISO/IEC 15288)

Процесс (исполнитель процесса) Действия Вход Результат
Приобретение (заказчик) - Инициирование - Подготовка заявочных предложений - Подготовка договора - Контроль деятельности поставщика - Приемка ИС - Решение о начале работ по внедрению ИС - Результаты обследования действий заказчика - Результаты анализа рынка ИС/ тендера - План поставки/ разработки - Комплексный тест ИС - Технико-экономическое обоснование внедрения ИС - Техническое задание на ИС - Договор на поставку/ разработку - Акты приемки этапов работы - Акт приемно-сдаточных испытаний
Поставка (разработчик ИС) - Инициирование - Ответ на заявочные предложения - Подготовка договора - Планирование исполнения - Поставка ИС - Техническое задание на ИС - Решение руководства об участии в разработке - Результаты тендера - Техническое задание на ИС - План управления проектом - Разработанная ИС и документация - Решение об участии в разработке - Коммерческие предложения/ конкурсная заявка - Договор на поставку/ разработку - План управления проектом - Реализация/ корректировка - Акт приемно-сдаточных испытаний
Разработка (разработчик ИС) - Подготовка - Анализ требований к ИС - Проектирование архитектуры ИС - Разработка требований к ПО - Проектирование архитектуры ПО - Детальное проектирование ПО - Кодирование и тестирование ПО - Интеграция ПО и квалифицированное тестирование ПО - Интеграция ИС и квалифицированное тестирование ИС - Техническое задание на ИС - Техническое задание на ИС, модель ЖЦ - Подсистемы ИС - Спецификации требования к компонентам ПО - Архитектура ПО - Материалы детального проектирования ПО - План интеграции ПО, тесты - Архитектура ИС, ПО, документация на ИС, тесты - Используемая модель ЖЦ, стандарты разработки - План работ - Состав подсистем, компоненты оборудования - Спецификации требования к компонентам ПО - Состав компонентов ПО, интерфейсы с БД, план интеграции ПО - Проект БД, спецификации интерфейсов между компонентами ПО, требования к тестам - Тексты модулей ПО, акты автономного тестирования - Оценка соответствия комплекса ПО требованиям ТЗ - Оценка соответствия ПО, БД, технического комплекса и комплекта документации требованиям ТЗ

Стадии создания систем (ISO/IEC 15288)


СРС: Создать техническое задание для проекта «Очередь» на сайте www.mastertz.ru

Модели ЖЦ ПО:

1. каскадная,

2. спиральная,

3. итерационная.

Каскадная модель жизненного цикла («модель водопада», англ. waterfall model) была предложена в 1970 г. Уинстоном Ройсом. Она предусматривает последовательное выполнение всех этапов проекта в строго фиксированном порядке. Переход на следующий этап означает полное завершение работ на предыдущем этапе.

Требования, определенные на стадии формирования требований, строго документируются в виде технического задания и фиксируются на все время разработки проекта.

Каждая стадия завершается выпуском полного комплекта документации, достаточной для того, чтобы разработка могла быть продолжена другой командой разработчиков.

Разработка требований
Формирование

Спиральная модель (англ. spiral model) была разработана в середине 1980-х годов Барри Боэмом. Она основана на классическом цикле Уильямса Эдварда Деминга PDCA (plan-do-check-act). При использовании этой модели ПО создается в несколько итераций (витков спирали) методом прототипирования.

Прототип – действующий компонент ПО, реализующий отдельные функции и внешние интерфейсы.

Каждая итерация соответствует созданию фрагмента или версии ПО, на ней уточняются цели и характеристики проекта, оценивается качество полученных результатов и планируются работы следующей итерации.

Рис. 21. Спиральная модель ЖЦ ПО

На каждой итерации оцениваются:

1. Риск превышения сроков и стоимости проекта;

2. Необходимость выполнения еще одной итерации;

3. Степень полноты и точности понимания требований к системе;

4. Целесообразность прекращения проекта.

Один из примеров реализации спиральной модели - RAD.

Основные принципы RAD:

1. Инструментарий должен быть нацелен на минимизацию времени разработки;

2. Создание прототипа для уточнения требований заказчика;

3. Цикличность разработки: каждая новая версия продукта основывается на оценке результата работы предыдущей версии заказчиком;

4. Минимизация времени разработки версии, за счёт переноса уже готовых модулей и добавления функциональности в новую версию;

5. Команда разработчиков должна тесно сотрудничать, каждый участник должен быть готов выполнять несколько обязанностей;

6. Управление проектом должно минимизировать длительность цикла разработки.

Итерационная модель: естественное развитие каскадной и спиральной моделей привело к их сближению и появлению современного итерационного подхода, который представляет рациональное сочетание этих моделей.

Рис. 22. Итерационная модель ЖЦ ПО

Разработка ПО невозможна без понимания так называемого жизненного цикла программ. Рядовому юзеру это, может быть, и не нужно знать, но основные стандарты желательно усвоить (далее будет сказано, зачем это нужно).

Жизненный цикл что это такое в формальном понимании?

Под жизненным циклом любого принято понимать время его существования, начиная со стадии разработки и до момента полного отказа от использования в выбранной сфере применения вплоть до полного изъятия приложения из обихода.

Говоря простым языком, информационные системы в виде программ, баз данных или даже «операционок» являются востребованными только в случае актуальности данных и возможностей, ними предоставляемых.

Считается, что определение жизненного цикла ни в коей мере не применяется к тестовым приложениям, например, к бета-версиям, которые являются самыми неустойчивыми в работе. Сам же жизненный цикл ПО зависит от множества факторов, среди которых одну из главных ролей играет среда, в которой программа будет использоваться. Однако можно выделить и общие условия, применяемые при определении понятия жизненного цикла.

Начальные требования

  • постановка задачи;
  • анализ взаимных требований будущего ПО к системе;
  • проектирование;
  • программирование;
  • кодирование и компиляция;
  • тестирование;
  • отладка;
  • внедрение и сопровождение программного продукта.

Разработка ПО состоит из всех вышеупомянутых стадий и не может обойтись хотя бы без одной из них. Но для контроля для таких процессов установлены специальные стандарты.

Стандарты процессов жизненного цикла программного обеспечения

Среди систем, предопределяющих условия и требования, предъявляемые к таким процессам, сегодня можно назвать только три основных:

  • ГОСТ 34.601-90;
  • ISO/IEC 12207:2008;
  • Oracle CDM.

Для второго международного стандарта имеется российский аналог. Это ГОСТ Р ИСО/МЭК 12207-2010, отвечающий за системную и программную инженерию. Но жизненный цикл программного обеспечения, описываемый в обоих правилах, является идентичным по сути. Объясняется это достаточно просто.

Виды ПО и апдейты

Они, кстати, для большинства ныне известных программ мультимедиа являются средствами сохранения основных параметров конфигурации. Использование ПО такого типа, конечно, является достаточно ограниченным, но понимание общих принципов работы с теми же медиаплеерами не повредит. И вот, почему.

По сути-то, в них жизненный цикл программного обеспечения заложен только на уровне срока обновления версии самого проигрывателя или установки кодеков и декодеров. А звуковые и видео транскодеры являются неотъемлемыми атрибутами любой аудио или видеосистемы.

Пример на основе программы FL Studio

Изначально виртуальная студия-секвенсор FL Studio имела название Fruity Loops. Жизненный цикл ПО в его первичной модификации истек, но приложение несколько трансформировалось и приобрело нынешний вид.

Если говорить об этапах жизненного цикла, сначала на стадии постановки задачи задавалось несколько обязательных условий:

  • создание барабанного модуля по типу ритм-машин вроде Yamaha RX, но с применением one-shot-сэмплов или секвенций в формате WAV, записанных в студиях вживую;
  • интеграция в операционные системы Windows;
  • возможность экспорта проекта в форматах WAV, MP3 и OGG;
  • совместимость проектов с дополнительным приложением Fruity Tracks.

На стадии разработки были применены средства языков программирования «Си». Но платформа выглядела достаточно примитивно и не давала конечному пользователю необходимого качества звучания.

В связи с этим, на стадии тестирования и отладки разработчикам пришлось пойти по пути немецкой корпорации Steinberg и применить в требованиях к основному звуковому драйверу поддержку режима Full Duplex. Качество саунда стало выше и позволило изменять темп, высоту тона и накладывать дополнительные FX-эффекты в режиме реального времени.

Завершением жизненного цикла этого ПО принято считать выход первой официальной версии FL Studio, которая, в отличие от своих прародителей, обладала уже интерфейсом полноценного секвенсора с возможностью редактирования параметров на виртуальном 64-канальном микшерном пульте с неограниченным добавлением аудио-дорожек и MIDI-треков.

Этим не ограничилось. На стадии управления проектом была введена поддержка подключения плагинов формата VST (сначала второй, а потом и третьей версии), в свое время разработанного компанией Steinberg. Грубо говоря, любой виртуальный синтезатор, поддерживающий VST-host мог подключаться к программе.

Неудивительно, что вскоре любой композитор мог использовать аналоги «железных» моделей, например, полные комплекты звуков некогда популярного Korg M1. Дальше - больше. Применение модулей вроде Addictive Drums или универсального плагина Kontakt позволило воспроизводить живые звуки реальных инструментов, записанных со всеми оттенками артикуляции в профессиональных студиях.

При этом разработчики постарались добиться и максимального качества, создав поддержку для драйверов ASIO4ALL, которые оказались на голову выше режима Full Duplex. Соответственно, повысился и битрейт. На сегодняшний день качество экспортируемого звукового файла может составлять 320 кбит/с при частоте дискретизации 192 кГц. А это профессиональный звук.

Что же касается начальной версии, ее жизненный цикл можно было бы назвать полностью законченным, но такое утверждение является относительным, поскольку приложение только сменило название и обрело новые возможности.

Перспективы развития

Что собой представляют этапы жизненного цикла программного обеспечения, уже понятно. Но вот о развитии таких технологий стоит сказать отдельно.

Не нужно говорить, что любой разработчик программного обеспечения не заинтересован в создании мимолетного продукта, который едва ли удержится на рынке в течение нескольких лет. В перспективе все смотрят на долгосрочное его использование. Достигаться это может разными способами. Но, как правило, практически все они сводятся к выпуску обновлений или новых версий программ.

Даже в случае с ОС Windows такие тенденции можно заметить невооруженным взглядом. Вряд ли сегодня найдется хоть один юзер, использующий системы вроде модификаций 3.1, 95, 98 или Millennium. Их жизненный цикл закончился после выхода версии XP. Но вот серверные версии на основе технологий NT все еще актуальны. Даже Windows 2000 на сегодняшний день является не только весьма актуальной, но и по некоторым параметрам установки или безопасности даже превосходящей самые новые разработки. То же самое касается системы NT 4.0, а также специализированной модификации Windows Server 2012.

Но по отношению именно к этим системам все равно заявлена поддержка на самом высоком уровне. А вот нашумевшая в свое время Vista явно испытывает закат цикла. Мало того, что она оказалась недоработанной, так еще и ошибок в ней самой и прорех в ее системе безопасности было столько, что остается только догадываться о том, как можно было выпустить на рынок программных продуктов такое несостоятельное решение.

Но если говорить о том, что развитие ПО любого типа (управляющего или прикладного) не стоит на месте, можно только Ведь сегодня дело касается не только компьютерных систем, а и мобильных устройств, в которых применяемые технологии зачастую опережают компьютерный сектор. Появление процессорных чипов на основе восьми ядер - чем не самый лучший пример? А ведь еще далеко не каждый ноутбук может похвастаться наличием такого «железа».

Некоторые дополнительные вопросы

Что же касается понимания жизненного цикла программного обеспечения, сказать, что он закончился в некоторый определенный момент времени, можно весьма условно, ведь программные продукты все равно имеют поддержку со стороны разработчиков, их создававших. Скорее окончание относится к устаревшим приложениям, которые не отвечают требованиям современных систем и не могут работать в их среде.

Но даже с учетом технического прогресса многие из них уже в ближайшее время могут оказаться несостоятельными. Вот тогда и придется принимать решение либо о выпуске обновлений, либо о полном пересмотре всей концепции, изначально заложенной в программный продукт. Отсюда - и новый цикл, предусматривающий изменение начальных условий, среды разработки, тестирования и возможного долгосрочного применения в определенной сфере.

Но в компьютерных технологиях сегодня отдается предпочтение развитию автоматизированных систем управления (АСУ), которые применяются на производстве. Даже операционные системы, в сравнении со специализированными программами, проигрывают.

Те же среды на основе Visual Basic остаются намного более популярными, нежели Windows-системы. А о прикладном ПО под UNIX-системы речь не идет вообще. Что говорить, если практически все коммуникационные сети тех же Соединенных Штатов работают исключительно на них. Кстати, системы вроде Linux и Android тоже изначально создавались именно на этой платформе. Поэтому, скорее всего, у UNIX перспектив намного больше, чем у остальных продуктов вместе взятых.

Вместо итога

Остается добавить, что в данном случае приведены только общие принципы и этапы жизненного цикла программного обеспечения. На самом деле даже начально поставленные задачи могут разниться очень существенно. Соответственно, различия могут наблюдаться и на остальных стадиях.

Но основные технологии разработки программных продуктов с их последующим сопровождением должны быть понятны. В остальном же следует учитывать и специфику создаваемого ПО, и среды, в которых оно предположительно должно работать, и возможности программ, предоставляемые конечному пользователю или производству, и многое другое.

К тому же, иногда жизненные циклы могут зависеть от актуальности средств разработки. Если, допустим, какой-то язык программирования устаревает, никто же не будет писать программы на его основе, и уж тем более - внедрять их в автоматизированные системы управления на производстве. Тут уже на первый план выходят даже не программисты, а маркетологи, которые должны своевременно реагировать на изменения компьютерного рынка. И таких специалистов в мире найдется не так уж и много. Высококвалифицированные кадры, способные держать руку на пульсе рынка, становятся наиболее востребованными. И именно они зачастую являются так называемыми «серыми кардиналами», от которых зависит успех или проигрыш определенного программного продукта в сфере IT.

Пусть они не всегда понимают суть программирования, зато четко способны определить модели жизненного цикла программного обеспечения и продолжительности времени их применения, исходя из мировых тенденций в этой области. Эффективный менеджмент зачастую дает более ощутимые результаты. Да хотя бы PR-технологии, реклама и т. д. Может какое-то приложение пользователю и не нужно, зато при условии его активного афиширования юзер установит его. Это уже, так сказать, подсознательный уровень (тот же эффект 25-го кадра, когда информация закладывается в сознание юзера независимо от него самого).

Конечно, такие технологии в мире являются запрещенными, однако многие из нас даже не догадываются о том, что они все равно могут использоваться и воздействовать на подсознание определенным способом. Чего только стоит «зомбирование» новостными каналами или интернет-сайтами, не говоря уже о применении более мощных средств, вроде воздействия инфразвуком (такое было применено в одной оперной постановке), вследствие чего человек может испытывать страх или неадекватные эмоции.

Возвращаясь к программному обеспечению, стоит добавить, что некоторые программы при запуске используют звуковой сигнал, привлекающий внимание юзера. И, как показывают исследования, такие приложения оказываются более жизнеспособными, в сравнении с другими программами. Естественно, увеличивается и жизненный цикл ПО, без разницы, какая функция на него возложена изначально. И этим, к сожалению, пользуются многие разработчики, что вызывает сомнения в законности таких методов.

Но не нам судить об этом. Возможно, в ближайшее время будут разработаны средства, определяющие такие угрозы. Пока это только теория, но, как считают некоторые аналитики и эксперты, до практического применения осталось совсем немного. Если уже создают копии нейронных сетей человеческого мозга, то что говорить?

Аннотация.

Введение.

1. Жизненный цикл ПО

Введение.

Шаги процесса программирования по Райли

Введение.

1.1.1. Постановка задачи.

1.1.2. Проектирование решения.

1.1.3. Кодирование алгоритма.

1.1.4. Сопровождение программы.

1.1.5. Программная документация.

Вывод к п. 1.1

1.2. Определение ЖЦПО по Леману.

Введение.

1.2.1 Определение системы.

1.2.2. Реализация.

1.2.3. Обслуживание.

Вывод к п. 1.2.

1.3. Фазы и работы ЖЦПО по Боэму

1.3.1. Каскадная модель.

1.3.2. Экономическое обоснование каскадной модели.

1.3.3. Усовершенствование каскадной модели.

1.3.4. Определение фаз жизненного цикла.

1.3.5. Основные работы над проектом.

Литература.

Введение

Промышленное применение компьютеров и растущий спрос на программы поставили актуальные задачи существенного повышения производительности разработки ПО , разработки индустриальных методов планирования и проектирования программ, переноса организационно-технических, технико-экономических и социально-психологических приемов, закономерностей и методов из сферы материального производства в сферу применения компьютеров. Комплексный подход к процессам разработки, эксплуатации и сопровождения ПО выдвинул ряд насущных проблем, решение которых исключит «узкие места» в проектировании программ, уменьшит сроки завершения работ, улучшит выбор и адаптацию существующих программ, а может быть и определит судьбу систем со встроенными ЭВМ.

В практике разработок больших программных проектов зачастую отсутствует единый подход к оцениванию затрат труда, сроков проведения работ и материальных затрат, что сдерживает повышение производительности разработки ПО, а в конечном счете – эффективное управление жизненным циклом ПО. Поскольку программа любого типа становится изделием (кроме, может быть, учебных, макетных программ), подход к ее изготовлению во многом должен быть аналогичен подходу к производству промышленной продукции, и вопросы проектирования программ становятся чрезвычайно важными. Эта идея лежит в основе книги Б.У. Боэма «Инженерное проектирование программного обеспечения», которую мы использовали при написании данной курсовой работы. В этой книге под проектированием ПО понимается процесс создания проекта программного изделия.

1 Жизненный цикл ПО

ВВЕДЕНИЕ

ЖЦПО – это непрерывный процесс, который начинается с момента принятия решения о необходимости создания ПО и заканчивается в момент его полного изъятия из эксплуатации.

Существует несколько подходов при определении фаз и работ жизненного цикла программного обеспечения (ЖЦПО), шагов процесса программирования, каскадная и спиральная модели. Но все они содержат общие основополагающие компоненты: постановка задачи, проектирование решения, реализация, обслуживание.

Наиболее известной и полной, пожалуй, является структура ЖЦПО по Боэму, включающая восемь фаз. Она и будет представлена в дальнейшем наиболее подробно.

Одним из возможных вариантов может послужить описание верхнего уровня по Леману, включающее три основные фазы и представляющее описание ЖЦПО в самом общем случае.

И, для разнообразия, – приведем шаги процесса программирования, представленные Д.Райли в книге «Использование языка Модула-2». Это представление, по-моему, является весьма простым и привычным, с него и начнём.

1.1 Шаги процесса программирования по Райли

Введение

Процесс программирования включает четыре шага (рис. 1):

постановка задачи, т.е. получение адекватного представления о том, какую задачу должна выполнить программа;

проектирование решения уже поставленной задачи (в общем, такое решение является менее формальным, чем окончательная программа);

кодирование программы, т. е. перевод спроектированного решения в программу, которая может быть выполнена на машине;

сопровождение программы, т.е. непрекращающийся процесс устранения в программе неполадок и добавления новых возможностей.

Рис. 1.Четыре шага программирования.

Программирование начинается с того момента, когда пользователь , т.е. тот, кто нуждается в программе для решения задачи, излагает проблему системному аналитику. Пользователь и системный аналитик совместно определяют постановку задачи. Последняя затем передается алгоритмисту , который отвечает за проектирование решения. Решение (или алгоритм) представляет последовательность операций, выполнение которых приводит к решению задачи. Поскольку алгоритм часто не приспособлен к выполнению на машине, его следует перевести в машинную программу. Эта операция выполняется кодировщиком. За последующие изменения в программе несет ответственность сопровождающий программист. И системный аналитик, и алгоритмист, и кодировщик, и сопровождающий программист – все они являются программистами.

В случае большого программного проекта число пользователей, системных аналитиков и алгоритмистов может оказаться значительным. Кроме того, может возникнуть необходимость вернуться к предшествующим шагам в силу непредвиденных обстоятельств. Все это служит дополнительным аргументом в пользу тщательного проектирования программного обеспечения: результаты каждого шага должны быть полными, точными и понятными.

1.1.1 Постановка задачи

Одним из наиболее важных шагов программирования является постановка задачи. Она выполняет функции контракта между пользователем и программистом (программистами). Как и юридически плохо составленный контракт, плохая постановка задачи бесполезна. При хорошей постановке задачи как пользователь, так и программист ясно и недвусмысленно представляют задачу, которую необходимо выполнить, т.е. в этом случае учитываются интересы как пользователя, так и программиста. Пользователь может планировать использование еще несозданного программного обеспечения, опираясь на знание того, что оно может. Хорошая постановка задачи служит основой для формирования ее решения.

Постановка задачи (спецификация программы ); по существу, означает точное, полное и понятное описание того, что происходит при выполнении конкретной программы. Пользователь обычно смотрит на компьютер, как на черный ящик: для него неважно, как работает компьютер, а важно, что может компьютер из того, что интересует пользователя. При этом основное внимание фокусируется на взаимодействии человека с машиной.

Характеристики Хорошей Постановки Задачи:

Точность , т.е. исключение любой неоднозначности. Не должно возникать вопросов относительно того, каким будет вывод программы при каждом конкретном вводе.

Полнота , т.е. рассмотрение всех вариантов для заданного ввода, включая ошибочный или непредусмотренный ввод, и определение соответствующего вывода.

Ясность , т.е. она должна быть понятной и пользователю и системному аналитику, поскольку постановка задачи – это единственный контракт между ними.

Часто требование точности, полноты и ясности находятся в противоречии. Так, многие юридические документы трудно понять, потому что они написаны на формальном языке, который позволяет предельно точно сформулировать те или иные положения, исключая любые самые незначительные разночтения. Например, некоторые вопросы в экзаменационных билетах иногда сформулированы настолько точно, что студент тратит больше времени на то, чтобы понять вопрос, чем на то чтобы на него ответить. Более того, студент вообще может не уловить основной смысл вопроса из-за большого количества деталей. Наилучшая постановка задачи та, при которой достигается баланс всех трех требований.

Стандартная форма постановки задачи.

Рассмотрим следующую постановку задачи: «Ввести три числа и вывести числа в порядке».

Такая постановка не удовлетворяет приведенным выше требованиям: она не является ни точной, ни полной, ни понятной. Действительно, должны ли числа вводиться по одному на строке или все числа на одной строке? Означает ли выражение «в порядке» упорядочение от большего к меньшему, от меньшего к большему или тот же порядок, в каком они были введены.

Очевидно, что подобная постановка не отвечает на множество вопросов. Если же учесть ответы на все вопросы, то постановка задачи станет многословной и трудной для восприятия. Поэтому Д. Райли предлагает для постановки задачи пользоваться стандартной формой, которая обеспечивает максимальную точность, полноту, ясность и включает:

наименование задачи (схематическое определение);

общее описание (краткое изложение задачи);

ошибки (явно перечислены необычные варианты ввода, чтобы показать пользователям и программистам те действия, которые предпримет машина в подобных ситуациях);

пример (хороший пример может передать сущность задачи, а также проиллюстрировать различные случаи).

Пример. Постановка задачи в стандартной форме.

НАЗВАНИЕ

Сортировка трех целых чисел.

ОПИСАНИЕ

Ввод и вывод трех целых чисел, отсортированных от меньшего числа к большему.

Вводятся три целых числа по одному числу на строке. При этом целым числом является одна или несколько последовательных десятичных цифр, которым может предшествовать знак плюс «+» или знак минус «–».

Выводятся три введенных целых числа, причем все три выводятся на одной строке. Смежные числа разделяются пробелом. Числа выводятся от меньшего к большему, слева направо.

1) Если введено менее трех чисел, программа ждет дополнительного ввода.

2) Строки ввода, кроме первых трех, игнорируются.

3) Если какая-либо из первых трех строк содержит более одного целого числа, то программа завершает работу и выдает сообщение.


Рис. 5.2.

Такими аспектами являются:

  1. договорный аспект, в котором заказчик и поставщик вступают в договорные отношения и реализуют процессы приобретения и поставки;
  2. аспект управления, который включает действия управления лицами, участвующими в ЖЦ ПО (поставщик, заказчик, разработчик, оператор и др.);
  3. аспект эксплуатации, включающий действия оператора по предоставлению услуг пользователям системы;
  4. инженерный аспект, который содержит действия разработчика или службы сопровождения по решению технических задач, связанных с разработкой или модификацией программных продуктов;
  5. аспект поддержки, связанный с реализацией вспомогательных процессов, с помощью которых службы поддержки предоставляют необходимые услуги всем остальным участникам работ. В этом аспекте можно выделить аспект управления качеством ПО, включающий процессы обеспечения качества, верификацию, аттестацию, совместную оценку и аудит.

Организационные процессы выполняются на корпоративном уровне или на уровне всей организации в целом, создавая базу для реализации и постоянного совершенствования процессов ЖЦ ПО .

5.6. Модели и стадии ЖЦ ПО

Под моделью ЖЦ ПО понимается структура, определяющая последовательность выполнения и взаимосвязи процессов, действий и задач на протяжении ЖЦ ПО . Модель ЖЦ зависит от специфики, масштаба и сложности проекта и специфики условий, в которых система создается и функционирует.

Стандарт ISO / IEC 12207 не предлагает конкретную модель ЖЦ и методы разработки ПО . Его положения являются общими для любых моделей ЖЦ, методов и технологий разработки ПО . Стандарт описывает структуру процессов ЖЦ ПО , но не конкретизирует, как реализовать или выполнить действия и задачи, включенные в эти процессы.

Модель ЖЦ любого конкретного ПО определяет характер процесса его создания, который представляет собой совокупность упорядоченных во времени, взаимосвязанных и объединенных в стадии (фазы) работ , выполнение которых необходимо и достаточно для создания ПО , соответствующего заданным требованиям.

Под стадией (фазой) создания ПО понимается часть процесса создания ПО , ограниченная некоторыми временными рамками и заканчивающаяся выпуском конкретного продукта (моделей ПО , программных компонентов, документации и пр.), определяемого заданными для данной стадии требованиями. Стадии создания ПО выделяются по соображениям рационального планирования и организации работ , заканчивающихся заданными результатами. В состав ЖЦ ПО обычно включаются следующие стадии:

  1. формирование требований к ПО;
  2. проектирование (разработка системного проекта);
  3. реализация (может быть разбита на подэтапы: детальное проектирование, кодирование);
  4. тестирование (может быть разбито на автономное и комплексное тестирование и интеграцию);
  5. ввод в действие (внедрение);
  6. эксплуатация и сопровождение;
  7. снятие с эксплуатации.

Некоторые специалисты вводят дополнительно начальную стадию – анализ осуществимости системы. Здесь имеется в виду программно-аппаратная система, для которой создается, приобретается или модифицируется ПО .

Стадия формирования требований к ПО является одной из важнейших и определяет в значительной (даже решающей!) степени успех всего проекта. Началом этой стадии является получение одобренной и утвержденной архитектуры системы с включением основных соглашений о распределении функций между аппаратурой и программами. Этот документ должен также содержать подтверждение общего представления о функционировании ПО с включением основных соглашений о распределении функций между человеком и системой.

Стадия формирования требований к ПО включает следующие этапы.

  1. Планирование работ, предваряющее работы над проектом. Основными задачами этапа являются определение целей разработки, предварительная экономическая оценка проекта, построение плана-графика выполнения работ, создание и обучение совместной рабочей группы.
  2. Проведение обследования деятельности автоматизируемой организации (объекта), в рамках которого осуществляются предварительное выявление требований к будущей системе определение структуры организации, определение перечня целевых функций организации, анализ распределения функций по подразделениям и сотрудникам, выявление функциональных взаимодействий между подразделениями, информационных потоков внутри подразделений и между ними, внешних по отношению к организации объектов и внешних информационных воздействий, анализ существующих средств автоматизации деятельности организации.
  3. Построение модели деятельности организации (объекта), предусматривающее обработку материалов обследования и построение двух видов моделей:

    • модели "AS-IS" ("как есть"), отражающей существующее на момент обследования положение дел в организации и позволяющей понять, каким образом работает данная организация, а также выявить узкие места и сформулировать предложения по улучшению ситуации;
    • модели "TO-BE" ("как должно быть"), отражающей представление о новых технологиях работы организации.

Каждая из моделей должна включать полную функциональную и информационную модель деятельности организации, а также (при необходимости) модель, описывающую динамику поведения организации. Заметим, что построенные модели имеют самостоятельное практическое значение , независимо от того, будет ли на предприятии разрабатываться и внедряться информационная система, поскольку с их помощью можно обучать сотрудников и совершенствовать бизнес-процессы предприятия.

Результатом завершения стадии формирования требований к ПО являются спецификации ПО , функциональные, технические и интерфейсные спецификации, для которых подтверждена их полнота , проверяемость и осуществимость.

Стадия проектирования включает следующие этапы.

  1. Разработка системного проекта ПО. На этом этапе дается ответ на вопрос "Что должна делать будущая система?", а именно: определяются архитектура системы, ее функции, внешние условия функционирования, интерфейсы и распределение функций между пользователями и системой, требования к программным и информационным компонентам, состав исполнителей и сроки разработки, план отладки ПО и контроль качества.

    Основу системного проекта составляют модели проектируемой системы, которые строятся на модели "TO-BE". Результатом разработки системного проекта должна быть одобренная и подтвержденная спецификация требований к ПО: функциональные, технические и интерфейсные спецификации, для которых подтверждена их полнота, проверяемость и осуществимость.

  2. Разработка детального (технического) проекта. На этом этапе осуществляется собственно проектирование ПО, включающее проектирование архитектуры системы и детальное проектирование. Таким образом, дается ответ на вопрос: "Как построить систему, чтобы она удовлетворяла требованиям?"

Результатом детального проектирования является разработка верифицированной спецификации ПО , включающей:

  • формирование иерархии программных компонентов, межмодульных интерфейсов по данным и управлению;
  • спецификация каждого компонента ПО, имени, назначения, предположений, размеров, последовательности вызовов, входных и выходных данных, ошибочных выходов, алгоритмов и логических схем;
  • формирование физической и логической структур данных до уровня отдельных полей;
  • разработку плана распределения вычислительных ресурсов (времени центральных процессоров, памяти и др.);
  • верификацию полноты, непротиворечивости, осуществимости и обоснованности требований;
  • предварительный план комплексирования и отладки, план руководства для пользователей и приемных испытаний.

Завершением стадии детального проектирования является сквозной



Поделиться