Разведывательный анализ данных. Методы графического разведочного анализа данных. Средства Statistica для проведения графического разведочного анализа данных. Факторный анализ как метод редукции данных

1. Понятие интеллектуального анализа данных. Методы Data Mining.

Ответ: Интеллектуальный анализ данных (англ. Data Mining) - выявление скрытых закономерностей или взаимосвязей между переменными в больших массивах необработанных данных. Как правило подразделяется на задачи классификации, моделирования и прогнозирования. Процесс автоматического поиска закономерностей в больших массивах данных. Термин Data Mining веден Григорием Пятецким-Шапиро в 1989 г.

2. Понятие разведочного анализа данных. В чем отличие процедуры Data Mining от методов классического статистического анализа данных?

Ответ: Разведочных анализ данных (РАД) применяется для нахождения систематических связей между переменными в ситуациях, когда отсутствуют (или имеются недостаточные) априорные представления о природе этих связей

Традиционные методы анализа данных в основном ориентированы на проверку заранее сформулированных гипотез и на "грубый" разведочный анализ, в то время как одно из основных положений Data Mining - поиск неочевидных закономерностей.

3. Методы графического разведочного анализа данных. Средства Statistica для проведения графического разведочного анализа данных.

Ответ: С помощью графических методов можно находить зависимости, тренды и смещения, "скрытые" в неструктурированных наборах данных.

Средства Statistica для проведения графического разведочного анализа: категоризованные радиальные диаграммы, гистограммы (2D и 3D).

Ответ: Эти графики представляют собой наборы двумерных, трехмерных, тернарных или n-мерных графиков (таких как гистограммы, диаграммы рассеяния, линейные графики, поверхности, круговые диаграммы), по одному графику для каждой выбранной категории (подмножества) наблюдений.

5. Какую информацию о природе данных можно получить при анализе диаграмм рассеяния и категоризованных диаграмм рассеяния?

Ответ: Диаграммы рассеяния обычно используются для выявления природы взаимосвязи двух переменных (например, прибыль и фонд заработной платы), поскольку они предоставляют гораздо больше информации, чем коэффициент корреляции.

6. Какую информацию о природе данных можно получить на основе анализа гистограмм и категоризованных гистограмм?

Ответ: Гистограммы используются для изучения распределений частот значений переменных. Такое частотное распределение показывает, какие именно конкретные значения или диапазоны значений исследуемой переменной встречаются наиболее часто, насколько различаются эти значения, расположено ли большинство наблюдений около среднего значения, является распределение симметричным или асимметричным, многомодальным (т.е. имеет две или более вершины) или одномодальным и т.д. Гистограммы также используются для сравнения наблюдаемых и теоретических или ожидаемых распределений.

Категоризованные гистограммы представляют собой наборы гистограмм, соответствующих различным значениям одной или нескольких категоризующих переменных или наборам логических условий категоризации.

7. Чем принципиально отличаются категоризованные графики от матричных графиков в системе Statistica?

Ответ: Матричные графики также состоят из нескольких графиков; однако здесь каждый из них основывается (или может основываться) на одном и том же множестве наблюдений, и графики строятся для всех комбинаций переменных из одного или двух списков. Для категоризованных графиков требуется такой же выбор переменных, как и для некатегоризованных графиков соответствующего типа (например, две переменных для диаграммы рассеяния). В то же время для категоризованных графиков необходимо указать по крайней мере одну группирующую переменную (или способ разбиения наблюдений на категории), где содержалась бы информация о принадлежности каждого наблюдения к определенной подгруппе. Группирующая переменная не будет непосредственно изображена на графике (т.е. не будет построена), однако она будет служить критерием для разделения всех анализируемых наблюдений на отдельные подгруппы. Для каждой группы (категории), определяемой группирующей переменной, будет построен один график.

8. В чем достоинства и недостатки графических методов разведочного анализа данных?

Ответ: + Наглядность и простота.

- Методы дают приближенные значения.

9. Какие аналитические методы первичного разведочного анализа данных вы знаете?

Ответ: Статистические методы, нейронные сети.

10. Как проверить гипотезу о согласии распределения выборочных данных с моделью нормального распределения в системе Statistica?

Ответ: Распределение x 2 (хи-квадрат) с n степенями свободы - это распределение суммы квадратов n независимых стандартных нормальных случайных величин.

Хи-квадрат - это мера различия. Задаем уровень ошибки, равный a=0,05. Соответственно, если значение p>a , то распределение оптимально.

- для проверки гипотезы о согласии распределения выборочных данных с моделью нормального распределения с помощью критерия хи-квадрат выберите пункт меню Statistics/Distribution Fittings. Затем в диалоговом окне Fitting Contentious Distribution задайте вид теоретического распределения - Normal, выберите переменную - Variables, задайте параметры анализа - Parameters.

11. Какие основные статистические характеристики количественных переменных вы знаете? Их описание и интерпретация в терминах решаемой задачи.

Ответ: Основные статистические характеристики количественных переменных:

математическое ожидание (средний объем производства среди предприятий)

медиана

среднее квадратичное отклонение (Квадратный корень из дисперсии)

дисперсия (мера разброса данной случайной величины, т.е. её отклонения от математического ожидания)

коэффициент асимметрии (Определяем смещение относительно центра симметрии по правилу: если B1>0, то смещение влево, иначе - вправо.)

коэффициента эксцесса (близость к нормальному распределению)

минимальное выборочное значение, максимальное выборочное значение,

разброс

Частный коэффициент корреляции (измеряет степень тесноты между переменными, при условии что значения остальных переменных зафиксированы на постоянном уровне).

Качественные:

Коэффициент ранговой корреляции Спирмена (используется с целью статистического изучения связи между явлениями. Изучаемые объекты упорядочиваются в отношении некоторого признака т. е. им приписываются порядковые номера - ранги.)

Литература

1. Айвазян С.А., Енюков И.С., Мешалкин Л.Д. Прикладная статистика: Основы моделирования и первичная обработка данных. - М.: "Финансы и статистика", 1983. - 471 с.

2. Боровиков В.П. Statistica. Искусство анализа данных на компьютере: Для профессионалов. 2-е изд. - СПб.: Питер, 2003. - 688 с.

3. Боровиков В.П., Боровиков И.П. Statistica - Статистический анализ и обработка данных в среде Windows. - М.: "Филин", 1997. - 608 с.

4. Электронный учебник StatSoft по анализу данных.

STATISTICA предлагает широкий выбор методов разведочного статистического анализа. Система может вычислить практически все описательные статистики, включая медиану, моду, квартили, определенные пользователем процентили, средние и стандартные отклонения, доверительные интервалы для среднего, коэффициенты асимметрии, эксцесса (с их стандартными ошибками), гармоническое и геометрическое среднее, а также многие другие описательные статистики. Возможен выбор критериев для тестирования нормальности распределения (критерий Колмогорова-Смирнова, Лилиефорса, Шапиро-Уилкса). Широкий выбор графиков помогает проведению разведочного анализа.

2. Корреляции.

Этот раздел включает большое количество средств, позволяющих исследовать зависимости между переменными. Возможно вычисление практически всех общих мер зависимости, включая коэффициент корреляции Пирсона, коэффициент ранговой корреляции Спирмена, Тау (Ь,с) Кендалла, Гамма, коэффициент сопряженности признаков С и многие другие..

Корреляционные матрицы могут быть вычислены и для данных с пропусками, используя специальные методы обработки пропущенных значений.

Специальные графические возможности позволяют выбрать отдельные точки на диаграмме рассеяния и оценить их вклад в регрессионную кривую или любую другую кривую, подогнанную к данным.

3. t - критерии (и другие критерии для групповых различий).

Процедуры позволяют вычислить t-критерии для зависимых и независимых выборок, а также статистика Хоттелинга (см. также ANOVA/MANOVA).

4. Таблицы частот и таблицы кросстабуляций.

В модуле содержится обширный набор процедур, обеспечивающих табулирование непрерывных, категориальных, дихотомических переменных, переменных, полученных в результате многовариативных опросов. Вычисляются как кумулятивные, так и относительные частоты. Доступны тесты для кросстабулированных частот. Вычисляются статистики Пирсона, максимального правдоподобия, Иегс-коррекция, хи-квадрат, статистики Фишера, Макнемера и многие другие.

Модуль «Множественная регрессия»

Модуль «Множественная регрессия» включает в себя исчерпывающий набор средств множественной линейной и фиксированной нелинейной (в частности, полиномиальной, экспоненциальной, логарифмической и др.) регрессии, включая пошаговые, иерархические и другие методы, а также ридж-регрессию.

Система STATISTICA позволяет вычислить всесторонний набор статистик и расширенной диагностики, включая полную регрессионную таблицу, частные и частичные корреляции и ковариации для регрессионных весов, матрицы прогонки, статистику Дарбина-Ватсона, расстояния Махаланобиса и Кука, удаленные остатки и многие другие. Анализ остатков и выбросов может быть проведен при помощи широкого набора графиков, включая разнообразные точечные графики, графики частичных корреляций и многие другие. Система прогноза позволяет пользователю выполнять анализ "что - если". Допускаются чрезвычайно большие регрессионные задачи (до 300 переменных в процедуре разведочной регрессии). STATISTICA также содержит «Модуль нелинейного оценивания», с помощью которого могут быть оценены практически любые определенные пользователем нелинейные модели, включая логит, пробит регрессию и др.

Модуль «Дисперсионный анализ». Общий ANOVA/MANOVA модуль

ANOVA/MANOVA модуль представляет собой набор процедур общего одномерного и многомерного дисперсионного и ковариационного анализа.

В модуле представлен самый широкий выбор статистических процедур для проверки основных предположений дисперсионного анализа, в частности, критерии Бартлетта, Кохрана, Хартли, Бокса и других.

Модуль «Дискриминантный анализ»

Методы дискриминантного анализа позволяют построить на основе ряда предположений классификационное правило отнесения объекта к одному из нескольких классов, минимизируя некоторый разумный критерий, например, вероятность ложной классификации или заданную пользователем функцию потерь. Выбор критерия определяется пользователем из соображений ущерба, который он понесет из-за ошибок классификации.

Модуль дискриминантного анализа системы STATISTICA содержит полный набор процедур для множественного пошагового функционального дискриминантного анализа. STATISTICA позволяет выполнять пошаговый анализ, как вперед, так и назад, а также внутри определенного пользователем блока переменных в модели.

Модуль «Непараметрическая статистика и подгонка распределений»

Модуль содержит обширный набор непараметрических критериев согласия, в частности, критерий Колмогорова-Смирнова, ранговые критерии Манна-Уитни, Валь-да-Вольфовица, Вилкоксона и многие другие.

Все реализованные ранговые критерии доступны в случае совпадающих рангов и используют поправки для малых выборок.

Статистические процедуры модуля позволяют пользователю легко сравнить распределение наблюдаемых величин с большим количеством различных теоретических распределений. Вы можете подогнать к данным нормальное, равномерное, линейное, экспоненциальное, Гамма, логнормальное, хи-квадрат, Вейбулла, Гомпертца, биномиальное, Пуассоновское, геометрическое распределения, распределение Бернулли. Точность подгонки оценивается с помощью критерия хи-квадрат или одновыборочного критерия Колмогорова-Смирнова (параметры подгонки могут контролироваться); также поддерживаются тесты Лиллифорса и Шапиро-Уилкса.

Модуль «Факторный анализ»

Модуль факторного анализа содержит широкий набор методов и опций, снабжающих пользователя исчерпывающими средствами факторного анализа.

Он, в частности, включает в себя метод главных компонент, метод минимальных остатков, метод максимального правдоподобия и др. с расширенной диагностикой и чрезвычайно широким набором аналитических и разведочных графиков. Модуль может выполнять вычисление главных компонент общего и иерархического факторного анализа с массивом, содержащим до 300 переменных. Пространство общих факторов может быть выведено на график и просмотрено либо "ломтик за ломтиком", либо на 2- или 3-мерных диаграммах рассеяния с помеченными переменными-точками.

После того как решение определено, пользователь может пересчитать корреляционную матрицу от соответствующего числа факторов для того, чтобы оценить качество построенной модели.

Кроме того, STATISTICA содержит модуль «Многомерное шкалирование», модуль «Анализ надежности», модуль «Кластерный анализ», модуль «Лог-линейный анализ», модуль «Нелинейное оценивание», модуль «Каноническая корреляция», модуль «Анализ длительностей жизни», модуль «Анализ временных рядов и прогнозирование» и другие.

Численные результаты статистического анализа в системе STATISTICA выводятся в виде специальных электронных таблиц, которые называются таблицами вывода результатов - ScroHsheets ™. Таблицы Scrollsheet могут содержать любую информацию (как численную, так и текстовую), от короткой строчки до мегабайтов результатов. В системе STATISTICA эта информация выводится в виде последовательности (очереди), которая состоит из набора таблиц Scrollsheet и графиков.

STATISTICA содержит большое количество инструментов для удобного просмотра результатов статистического анализа и их визуализации. Они включают в себя стандартные операции по редактированию таблицы (включая операции над блоками значений, Drag-and-Drop - "Перетащить и опустить", автозаполнение блоков и др.), операции удобного просмотра (подвижные границы столбцов, разделение прокрутки в таблице и др.), доступ к основным статистикам и графическим возможностям системы STATISTICA. При выводе целого ряда результатов (например, корреляционной матрицы) STATISTICA отмечает значимые коэффициенты корреляции цветом. Пользователь так же имеет возможность выделить при помощи цвета необходимые значения в таблице Scrollsheet.

Если пользователю необходимо провести детальный статистический анализ промежуточных результатов, то можно сохранить таблицу Scrollsheet в формате файла данных STATISTICA и далее работать с ним, как с обычными данными.

Кроме вывода результатов анализа в виде отдельных окон с графиками и таблицами Scrollsheet на рабочем пространстве системы STATISTICA, в системе имеется возможность создания отчета, в окно которого может быть выведена вся эта информация. Отчет - это документ (в формате RTF), который может содержать любую текстовую или графическую информацию. В STATISTICA имеется возможность автоматического создания отчета, так называемого автоотчета. При этом любая таблица Scrollsheet или график могут автоматически быть направлены в отчет.

ВЫВОД ИТОГОВ

Таблица 8.3а. Регрессионная статистика
Регрессионная статистика
Множественный R 0,998364
R-квадрат 0,99673
Нормированный R-квадрат 0,996321
Стандартная ошибка 0,42405
Наблюдения 10

Сначала рассмотрим верхнюю часть расчетов, представленную в таблице 8.3а , - регрессионную статистику.

Величина R-квадрат , называемая также мерой определенности, характеризует качество полученной регрессионной прямой. Это качество выражается степенью соответствия между исходными данными и регрессионной моделью (расчетными данными). Мера определенности всегда находится в пределах интервала .

В большинстве случаев значение R-квадрат находится между этими значениями, называемыми экстремальными, т.е. между нулем и единицей.

Если значение R-квадрата близко к единице, это означает, что построенная модель объясняет почти всю изменчивость соответствующих переменных. И наоборот, значение R-квадрата , близкое к нулю, означает плохое качество построенной модели.

В нашем примере мера определенности равна 0,99673, что говорит об очень хорошей подгонке регрессионной прямой к исходным данным.

Множественный R - коэффициент множественной корреляции R - выражает степень зависимости независимых переменных (X) и зависимой переменной (Y).

Множественный R равен квадратному корню из коэффициента детерминации, эта величина принимает значения в интервале от нуля до единицы.

В простом линейном регрессионном анализе множественный R равен коэффициенту корреляции Пирсона. Действительно, множественный R в нашем случае равен коэффициенту корреляции Пирсона из предыдущего примера (0,998364).

Таблица 8.3б. Коэффициенты регрессии
Коэффициенты Стандартная ошибка t-статистика
Y-пересечение 2,694545455 0,33176878 8,121757129
Переменная X 1 2,305454545 0,04668634 49,38177965
* Приведен усеченный вариант расчетов

Теперь рассмотрим среднюю часть расчетов, представленную в таблице 8.3б . Здесь даны коэффициент регрессии b (2,305454545) и смещение по оси ординат, т.е. константа a (2,694545455).

Исходя из расчетов, можем записать уравнение регрессии таким образом:

Y= x*2,305454545+2,694545455

Направление связи между переменными определяется на основании знаков (отрицательный или положительный) коэффициентов регрессии (коэффициента b).

Если знак при коэффициенте регрессии - положительный, связь зависимой переменной с независимой будет положительной. В нашем случае знак коэффициента регрессии положительный, следовательно, связь также является положительной.

Если знак при коэффициенте регрессии - отрицательный, связь зависимой переменной с независимой является отрицательной (обратной).

В таблице 8.3в . представлены результаты вывода остатков . Для того чтобы эти результаты появились в отчете, необходимо при запуске инструмента "Регрессия" активировать чекбокс "Остатки".

ВЫВОД ОСТАТКА

Таблица 8.3в. Остатки
Наблюдение Предсказанное Y Остатки Стандартные остатки
1 9,610909091 -0,610909091 -1,528044662
2 7,305454545 -0,305454545 -0,764022331
3 11,91636364 0,083636364 0,209196591
4 14,22181818 0,778181818 1,946437843
5 16,52727273 0,472727273 1,182415512
6 18,83272727 0,167272727 0,418393181
7 21,13818182 -0,138181818 -0,34562915
8 23,44363636 -0,043636364 -0,109146047
9 25,74909091 -0,149090909 -0,372915662
10 28,05454545 -0,254545455 -0,636685276

При помощи этой части отчета мы можем видеть отклонения каждой точки от построенной линии регрессии. Наибольшее абсолютное значение

Data Mining Фролов Тимофей. БИ-1102 Добыча данных это процесс аналитического исследования больших массивов информации (обычно экономического характера) с целью выявления определенных закономерностей и систематических взаимосвязей между переменными, которые затем можно применить к новым совокупностям данных. Этот процесс включает три основных этапа: исследование, построение модели или структуры и ее проверку. В идеальном случае, при достаточном количестве данных можно организовать итеративную процедуру для построения устойчивой модели. В то же время, в реальной ситуации практически невозможно проверить экономическую модель на стадии анализа и поэтому начальные результаты имеют характер эвристик, которые можно использовать в процессе принятия решения (например, "Имеющиеся данные свиделельствуют о том, что у женщин частота приема снотворных средств увеличивается с возрастом быстрее, чем у мужчин."). Методы Data Mining приобретают все большую популярность в качестве инструмента для анализа экономической информации, особенно в тех случаях, когда предполагается, что из имеющихся данных можно будет извлечь знания для принятия решений в условиях неопределенности. Хотя в последнее время возрос интерес к разработке новых методов анализа данных, специально предназначенных для сферы бизнеса (например, Деревья классификации), в целом системы Data Mining по-прежнему основываются на классических принципах разведочного анализа данных(РАД) и построения моделей и используют те же подходы и методы. Имеется, однако, важное отличие процедуры Data Mining от классического разведочного анализа данных (РАД) : системы Data Mining в большей степени ориентированы на практическое приложение полученных результатов, чем на выяснение природы явления. Иными словами, при Data Mining нас не очень интересует конкретный вид зависимостей между переменными задачи. Выяснение природы участвующих здесь функций или конкретной формы интерактивных многомерных зависимостей между переменными не является главной целью этой процедуры. Основное внимание уделяется поиску решений, на основе которых можно было бы строить достоверные прогнозы. Таким образом, в области Data Mining принят такой подход к анализу данных и извлечению знаний, который иногда характеризуют словами "черный ящик". При этом используются не только классические приемы разведочного анализа данных, но и такие методы, как нейронные сети, которые позволяют строить достоверные прогнозы, не уточняя конкретный вид тех зависимостей, на которых такой прогноз основан. Очень часто Data Mining трактуется как "смесь статистики, методов искуственного интеллекта (ИИ) и анализа баз данных" (Pregibon, 1997, p. 8), и до последнего времени она не признавалась полноценной областью интереса для специалистов по статистике, а порой ее даже называли "задворками статистики" (Pregibon, 1997, p. 8). Однако, благодаря своей большой практической значимости, эта проблематика ныне интенсивно разрабатывается и привлекает большой интерес (в том числе и в ее статистических аспектах), и в ней достигнуты важные теоретические результаты (см. например, материалы ежегодно проводимой Международной конференции по поиску знаний и Data Mining (International Conferences on Knowledge Discovery and Data Mining), одним из организаторов которой в 1997 году стала Американская статистическая ассоциация - American Statistical Association). хранилище данных это место хранения больших многомерных массивов данных, которое позволяет легко извлекать и использовать информацию в процедурах анализа. Эффективная архитектура хранилища данных должна быть организована таким образом, чтобы быть составной частью информационной системы управления предприятием (или по крайней мере иметь связь со всеми доступными данными). При этом необходимо использовать специальные технологии работы с корпоративными базами данных (например, Oracle, Sybase, MS SQL Server). Высокопроизводительная технология хранилищ данных, позволяющая пользователям организовать и эффективно использовать базу данных предприятия практически неограниченной сложности, разработана компанией StatSoft enterprise systems и называется SENS и SEWSS ). Термин OLAP (или FASMI - быстрый анализ распределенной многомерной информации) обозначает методы, которые дают возможность пользователям многомерных баз данных в реальном времени генерировать описательные и сравнительные сводки ("views") данных и получать ответы на различные другие аналитические запросы. Обратите внимание, что несмотря на свое название, этот метод не подразумевает интерактивную обработку данных (в режиме реального времени); он означает процесс анализа многомерных баз данных (которые, в частности, могут содержать и динамически обновляемую информацию) путем составления эффективных "многомерных" запросов к данным различных типов. Средства OLAP могут быть встроены в корпоративные (масштаба предприятия) системы баз данных и позволяют аналитикам и менеджерам следить за ходом и результативностью своего бизнеса или рынка в целом (например, за различными сторонами производственного процесса или количеством и категориями совершенных сделок по разным регионам). Анализ, проводимый методами OLAP может быть как простым (например, таблицы частот, описательные статистики, простые таблицы), так и достаточно сложным (например, он может включать сезонные поправки, удаление выбросов и другие способы очистки данных). Хотя методы Data Mining можно применять к любой, предварительно не обработанной и даже неструктурированной информации, их можно также использовать для анализа данных и отчетов, полученных средствами OLAP, с целью более углубленного исследования, как правило, в более высоких размерностях. В этом смысле методы Data Mining можно рассматривать как альтернативный аналитический подход (служащий иным целям, нежели OLAP) или как аналитическое расширение систем OLAP. РАД и проверка гипотез В отличие от традиционной проверки гипотез, предназначенной для проверки априорных предположений, касающихся связей между переменными (например, "Имеется положительная корреляция между возрастом человека и его/ее нежеланием рисковать"), разведочный анализ данных (РАД) применяется для нахождения связей между переменными в ситуациях, когда отсутствуют (или недостаточны) априорные представления о природе этих связей. Как правило, при разведочном анализе учитывается и сравнивается большое число переменных, а для поиска закономерностей используются самые разные методы. Вычислительные методы РАД Вычислительные методы разведочного анализа данных включают основные статистические методы, а также более сложные, специально разработанные методы многомерного анализа, предназначенные для отыскания закономерностей в многомерных данных. Основные методы разведочного статистического анализа. К основным методам разведочного статистического анализа относится процедура анализа распределений переменных (например, чтобы выявить переменные с несимметричным или негауссовым распределением, в том числе и бимодальные), просмотр корреляционных матриц с целью поиска коэффициентов, превосходящих по величине определенные пороговые значения (см. предыдущий пример), или анализ многовходовых таблиц частот (например, "послойный" последовательный просмотр комбинаций уровней управляющих переменных). Методы многомерного разведочного анализа. Методы многомерного разведочного анализа специально разработаны для поиска закономерностей в многомерных данных (или последовательностях одномерных данных). К ним относятся: кластерный анализ, факторный анализ, анализ лискриминантных функций, многомерное шкалирование, логлинейный анализ,канонические корреляции, пошаговая линейная и нелинейная (например, логит) регрессия, анализ соответствий, анализ временных рядов. Нейронные сети. Этот класс аналитических методов основан на идее воспроизведения процессов обучения мыслящих существ (как они представляются исследователям) и функций нервных клеток. Нейронные сети могут прогнозировать будущие значения переменных по уже имеющимся значениям этих же или других переменных, предварительно осуществив процесс так называемого обучения на основе имеющихся данных. Предварительное исследование данных может служить лишь первым этапом в процессе их анализа, и пока результаты не подтверждены (методами кросс-проверки) на других фрагментах базы данных или на независимом множестве данных, их можно воспринимать самое большее как гипотезу. Если результаты разведочного анализа говорят в пользу некоторой модели, то ее правильность можно затем проверить, применив ее к новым данных и определив степень ее согласованности с данными (проверка "способности к прогнозированию"). Для быстрого выделения различных подмножеств данных (например, для очистки, проверки и пр.) и оценки надежности результатов удобно пользоваться условиями выбора наблюдений.



Поделиться