Самый известный космодром России: описание, история и фото. Самые крупные космодромы Самый старый космодром в мире

Исторически человечество всегда присматривались к небу и интересовалось различными небесными телами. Существуют легенды о том, что якобы первые люди побывали в космосе еще в древние времена, однако документально это ничем не подтверждено. Зато весь мир испытал удивление и радость, когда в 1961 году советский офицер Юрий Гагарин побывал в космосе и затем вернулся на Землю.

Первый пуск советского космического корабля произошел с секретного объекта под названием космодром Байконур. В этой статье мы с вами рассмотрим не только названную стартовую площадку, но и другие значимые места.

Первооткрыватель

«Научно-исследовательский испытательный полигон» - именно такое название носил проект, утверждённый Генштабом Министерства обороны СССР в 1955 году. Впоследствии это место стало называться космодром Байконур.

Данный объект расположен в Кызылординской области на территории Казахстана, неподалеку от поселка Торетам. Площадь его составляет около 6 717 кв. км. И уже много лет первый космодром мира считается одним из лидеров в своей отрасли по числу пусков. Так, например, в 2015 году с него было выведено на орбиту Земли 18 ракет. Названный полигон для осуществления космических стартов арендуется Россией у Казахстана до 2050 года. На эксплуатацию объекта тратится около 6 млрд российских рублей в год.

Уровень секретности

Все космодромы мира - звездные гавани, которые охраняются самым тщательным образом, и Байконур в этом плане - не исключение.

Так, строительство космического порта сопровождалось возведением ложного космодрома вблизи поселка Байконур. Такая тактика применялась и во время Второй мировой войны, когда военные строили ложные аэродромы с муляжами техники.

Непосредственно строительством космодрома занимались солдаты и офицеры стройбата. Если говорить кратко, то они совершили настоящий трудовой подвиг, поскольку смогли за два года возвести стартовую площадку.

Проблемы дня сегодняшнего

Сегодня для легендарного космодрома настали довольно тяжелые времена. Точкой отсчёта возникновения проблем можно считать 2009 год, когда его покинули военные, и объект перешёл полностью под юрисдикцию Роскосмоса. А все потому, что вместе с военными космодром потерял и довольно серьёзную сумму денег, которая ранее выделялась на обучение и испытания.

Конечно, пуск ракет со спутниками также приносит деньги, однако в наши дни это делается не так часто, как было раньше, когда ракеты взлетали практически каждую неделю. Тем не менее космодром все равно остается признанными мировым лидером в области космических стартов.

Российский гигант

Но все же, рассматривая космодромы мира, будет несправедливо не уделить внимание другим подобным объектам, один из которых расположен на территории Российской Федерации. Технические возможности и вложенные в его постройку и развитие деньги позволяют ему запускать и выводить на земную орбиту множество спутников и космических станций.

Космодром Плесецк - российская космическая гавань, расположенная в 180 километрах от Архангельска. Размеры объекта равняются 176 200 гектарам.

Космодром Плесецк по своей сути представляет особой достаточно сложный научно-технический комплекс, который предназначен как для выполнения военных задач, так и для использования в мирных целях.

В состав космодрома входит множество объектов:

  1. Комплексы для старта ракет-носителей.
  2. Технические комплексы (осуществляют подготовку ракет и прочих космических аппаратов).
  3. Станция заправочно-нейтрализационная многофункциональная. С ее помощью заправляют ракеты-носители, разгонные блоки.
  4. Почти 1500 зданий и сооружений.
  5. 237 объектов, обеспечивающих энергией весь космодром.

Дальневосточная площадка

Одним из новейших космодромов в России является Восточный, который расположился неподалеку от города Циолковского в Амурской области (Дальний Восток). Гавань используется исключительно в гражданских целях.

Возведение объекта началось ее в 2012 году и активно сопровождалось различными коррупционными скандалами и забастовками рабочих по причине невыплат зарплат.

Первый запуск с космодрома Восточный состоялся относительно недавно - 28 апреля 2016 года. Старт позволил вывести на орбиту три искусственных спутника. При этом на площадке в момент запуска носителей присутствовал лично Президент РФ Владимир Путин, а также вице-премьер России Дмитрий Рогозин и глава кремлевской администрации Сергей Иванов.

Следует отметить, что успешный запуск с космодрома Восточный был осуществлен лишь со второй попытки. Изначально планировалось ракету-носитель «Союз 2.1А» запустить 27 апреля, однако буквально за полторы минуты до старта автоматическая система отменила его. Руководство Роскосмоса данный инцидент объяснило аварийным сбоем в работе системы управления, в результате чего старт был перенесен на сутки.

Перечень основных космодромов планеты

Ныне существующие космодромы мира ранжируются по дате своего первого орбитального запуска (или его попытки), а также по количеству удачных и провальных запусков. Список их в настоящее время выглядит так:

Данная площадка для стартов впервые отправила ракету в космос 9 апреля 1968 года. Важно отметить, что космодром расположился буквально в пяти сотнях километров от экваториальной линии, что позволяет максимально эффективно запускать летательные аппараты на нашей Земли. Кроме того, географическое положение космического порта таково, что угол запуска всегда равен 102 градусам, а этот показатель значительно расширяет диапазон траекторий пусков объектов, применяемых для разнообразных задач.

Эффективность стартовой площадки настолько высока, что к ней было привлечено внимание множества корпоративных клиентов из многих стран мира: США, Канады, Японии, Бразилии, Индии, Азербайджана.

В 2015 году инвестировало свыше 1,6 млрд евро в модернизацию инфраструктуры космодрома. Также отдельного внимания заслуживает высокий уровень безопасности объекта. Космическая гавань расположена на территории, которая густо покрыта экваториальными лесами. При этом сам департамент слабо заселен. Помимо этого, отсутствует риск возникновения даже слабейших землетрясений или ураганов. Для обеспечения максимальной защиты от внешнего нападения на космодроме расположился 3-й полк Иностранного легиона (Франция).

Совместный проект

Стартовая платформа «Одиссей» является, по сути, огромным самоходным, полупогружаемым катамараном. Объект был построен в Норвегии на базе нефтедобывающей платформы. В состав описываемого мобильного космодрома входят:

  • стартовый стол;
  • установщик ракеты;
  • системы заправки горючим и окислителем;
  • система термостатирования;
  • система обеспечения азотом;
  • кабель-мачта.

Морская космическая пусковая установка обслуживается персоналом в количестве 68 человек. Для них построены жилые помещения, медицинский пункт и столовая.

Базируется платформа в порту Лонг-Бич, штат Калифорния (юго-запад США). В данное место своего постоянного дислоцирования промышленный гигант космической отрасли прибыл своим ходом, пройдя путь через Гибралтарский пролив, Суэцкий канал и Сингапур.

Заключение

Напоследок хотелось бы отметить, что все существующие сегодня космодромы мира позволяют человечеству активно развиваться и осваивать космос. С помощью площадок для выведения аппаратов на орбиту Земли осуществляется множество различных действий гражданского и военного направления.

Современные космодромы России являются объектами, играющими важнейшую роль в науке, экономике, социально-политических, культурных коммуникациях на самых разных уровнях. В РФ есть как действующие, так и строящиеся пусковые площадки. Где находятся космодромы России? Какими именно объектами они сейчас представлены?

Какие в РФ действуют космодромы?

«Байконур», «Плесецк», «Капустин Яр», «Ясный», «Свободный» и строящийся «Восточный» - это современные космодромы России. Список соответствующих объектов, конечно, может корректироваться — в зависимости от того, каким образом будет распределяться инфраструктура, задействуемая в рамках реализации российской космической программы. Не исключено, что в силу большой площади тех или иных космодромов, а также сложности задач, решаемых на них, будут открываться новые пусковые площадки, закрываться текущие и переноситься в другое место. Но на данный момент космодромы России, указанные выше, в целом можно рассматривать как в достаточной мере устоявшуюся систему объектов соответствующего назначения. Рассмотрим теперь специфику каждого из них подробнее.

«Байконур» - основной космодром в рамках космических программ РФ

«Байконур» — космодром, который принадлежит не России, а Казахстану, однако РФ является его практически единственным пользователем. Основные его эксплуатанты — РКК «Энергия», ЦСКБ «Прогресс», ГКНПЦ им. М. В. Хруничева, Космический центр «Южный». «Байконур» был построен в 1955 году. Данный объект взят правительством РФ в аренду у РК на 50 лет. Стоимость пользования космодромом составляет порядка 5 млрд. рублей в год — 3,5 млрд. составляет, собственно, арендная плата, 1,5 млрд. - средства, направляемые РФ на поддержание работоспособности инфраструктуры объекта.

Байконур, несмотря на юридическую принадлежность Казахстану, традиционно рассматривается как космодром России. Он известен тем, что с него был запущен Земли, первый пилотируемый корабль, различные научные спутники, Сейчас Байконур является крупнейшим из всех объектов соответствующего типа, которые задействуются в российской космической отрасли. Его общая площадь — порядка 6717 кв. км. В последние несколько лет данный космодром России — мировой лидер по количеству запусков.

Инфраструктура космодрома «Байконур»

Инфраструктура «Байконура» представлена, в частности, такими объектами:

9 стартовых комплексов различных категорий;

15 пусковых установок, предназначенных для запуска ракет, выводящих в космос спутники и корабли;

4 пусковые установки, используемые в целях проведения испытаний баллистических ракет;

11 корпусов, предназначенных для монтажа и испытания техники различного назначения;

34 комплекса, адаптированные для осуществления предстартовой подготовки ракет и выводимых ими в космос аппаратов различного назначения;

3 станции, на которых осуществляется заправка ракет-носителей и иных космических аппаратов различными видами топлива;

Измерительный комплекс;

Информационно-вычислительный центр, в котором осуществляется контроль, а также управление полетами космических аппаратов и обработка различных видов данных;

Кислородно-азотный производственный комплекс, способный выпускать порядка 300 тонн различных типов криогенных продуктов в течение суток;

ТЭЦ мощностью 60 МВт;

Энергопоезд мощностью 72 МВт, функционирующий на газовых турбинах;

В количестве 600 объектов;

В количестве 92 единиц;

Аэродромы - «Крайний» и «Юбилейный»;

Локальная железнодорожная инфраструктура общей протяженностью порядка 470 км;

Автомобильная инфраструктура протяженностью порядка 1281 км;

Линии электропередач в 6610 км, связи - в 2784 км.

Рассмотрев основные особенности крупнейшего космодрома, задействуемого в российской космической программе, изучим специфику других объектов соответствующего типа, что функционируют в России.

«Капустин Яр»

«Капустин Яр» многие исследователи склонны рассматривать скорее как военный полигон. Но по многим признакам его можно считать и космодромом, прежде всего в силу того, что с него осуществляются испытательные пуски баллистических ракет — с боеголовками, которые выводятся в открытый космос. «Капустин Яр» был построен в 1946 году.

Располагается данный космодром России преимущественно в но некоторые его территории входят в состав Атырауской, а также Западно-Казахстанской областей РК. Его общая площадь — порядка 650 кв. км. Данный космодром имеет собственный административный центр — город Знаменск. Неподалеку от него располагается военный аэродром.

«Ясный»

Космодром «Ясный» эксперты чаще всего рассматривают как пусковую базу — но для ракет, опять же, предназначенных для выведения в открытый космос. Активно используется с 2006 года. Располагается данный относительно новый космодром в России, в Ясненском районе, что находится в Оренбургской области.

Главным эксплуатантом объекта считается международная корпорация «Космотрас». Инфраструктура космодрома используется главным образом для выведения на околоземную орбиту различных спутников. При этом для решения соответствующих задач чаще всего используется ракета «Днепр» российско-украинского производства.

«Плесецк»

Самый северный космодром России - «Плесецк». Располагается примерно в 180 км от Архангельска — к югу от города. Площадь объекта составляет порядка 176,2 га. Эксплуатироваться в качестве космодрома «Плесецк» начал с 1966 года. С него могут осуществляться запуски ракет, принадлежащих к семейству Р-7 и других, что относятся к схожим классам.

Самый северный космодром России, как отмечают некоторые аналитики, имеет рекорд в части общего количества осуществленных с него запусков ракет в космос.

«Свободный»

Космодром «Свободный» располагается в Амурской области. Он эксплуатируется с 1996 года. Данный космодром России имеет площадь 410 кв. км, и имеет инфраструктуру для запуска ракет легкого и среднего класса. Интересен тот факт, что строительство «Свободного» было инициировано вследствие того, что после распада СССР основной советский космодром «Байконур» оказался за пределами РФ, и руководители российской космической программы решили, что государству необходим свой объект соответствующего назначения. На практике на тот момент самый восточный космодром России после начала эксплуатации задействовался, в частности, в целях испытательных пусков баллистических ракет — таких как «Тополь». Сейчас практически не используется активно, это во многом связано с тем, что на Дальнем Востоке строится новый объект — космодром «Восточный». Рассмотрим, в свою очередь, основные сведения о нем.

«Восточный»

Это новейший и самый восточный космодром России. Он начал строиться в 2010 году. Располагаться он будет, к слову, неподалеку от «Свободного», который предполагается расформировать в связи с инсталляцией основной инфраструктуры уже на «Восточном» и последующей оптимизацией логистики под специфику нового объекта.

Рассчитывается, что самый восточный строящийся космодром России займет площадь порядка 1035 кв. км. Его создание призвано решить следующие важнейшие задачи: приобретение Россией собственного космодрома, адаптированного для запуска любых типов ракет, формирование дополнительных импульсов интенсивного развития Дальневосточных территорий РФ. Данному региону уделяется особое внимание в государственных социально-экономических программах, и строительство соответствующего объекта здесь рассматривается как один из самых значимых факторов успешной реализации данных инициатив.

«Восточный» - космодром России, который имеет ряд преимуществ, в частности, перед «Байконуром». Так, например, трассы полетов ракет, которые будут запускаться отсюда, располагаются вне густонаселенных а также иностранных государств — таковые проложены над нейтральными водами. Кроме того, значимым фактором выступает то, где космодром в России расположен — а именно, в непосредственной близости от развитой транспортной инфраструктуры. Это делает эксплуатацию «Восточного» особенно рентабельной. Вместе с тем, некоторые эксперты также выделяют ряд недостатков в проекте соответствующего объекта российской космической программы. Прежде всего, отмечается тот факт, что «Восточный» расположен на 6 градусов севернее «Байконура» - поэтому общая масса полезной нагрузки, что выводится в космос, на российском космодроме будет немного ниже.

Когда начнутся запуски с «Восточного»?

Когда самый восточный космодром России будет открыт и начнет эксплуатироваться?

Изначально предполагалось, что первый с соответствующего объекта будет осуществлен в конце 2015 года. Но на данный момент он перенесен на 2016 год. Что касается запусков пилотируемого корабля с «Восточного» - первый должен состояться в 2016 году. Персонал нового российского космодрома будет жить в г. Углегорск, что расположен в Амурской области — в непосредственной близости от строящегося объекта. В этом же городе будут располагаться административные органы «Восточного». К слову, некоторые из объектов инфраструктуры космодрома, возможно, будут построены за пределами Амурской области. Предполагается, что с «Восточного» будет возможен запуск ракет практически любого типа — легких, средних и тяжелых — таких как, например, «Ангара», успешные испытания которой были проведены в РФ в 2014 году.

Резюме

Таким образом, современные космодромы России представлены 5 действующими объектами — к числу таковых пока что можно причислить «Свободный», поскольку на нем все же присутствует инфраструктура, и один строящийся. Располагаются они в самых разных частях РФ — на юге европейской части страны, на севере, на Дальнем Востоке. Крупнейший космодром, задействуемый в российской космической программе, располагается в Казахстане. Вскоре он разделит свои функции, которые выражаются в осуществлении запусков всех востребованных типов ракет, с космодромом «Восточный», который строится в Амурской области.

4 марта 1997 года состоялся первый космический запуск с нового российского космодрома «Свободный». Он стал двадцатым действующим на тот момент космодромом мира. Сейчас на месте этой стартовой площадки строится космодром «Восточный», ввод которого запланирован на 2018 год. Таким образом, у России будет уже 5 космодромов — больше чем у Китая, но меньше чем у США. Сегодня мы расскажем о крупнейших мировых космических площадках.

Байконур (Россия, Казахстан)

Старейшим и крупнейшим и поныне является «Байконур», открытый в степях Казахстана в 1957 году. Его площадь составляет 6717 кв.км. В лучшие — 60-е годы — на нем производилось до 40 запусков в год. И действовало 11 пусковых комплексов. За весь период существования космодрома с него было произведено более 1300 пусков.

По этому параметру «Байконур» лидирует в мире и поныне. Ежегодно здесь запускаются в космос в среднем два десятка ракет. Юридически космодром со всей его инфраструктурой и громадной территорией принадлежит Казахстану. А Россия арендует его за $ 115 млн. в год. Договор на аренду должен закончиться в 2050 году.

Однако еще раньше большинство российских запусков должно быть перенесено на ныне строящийся в Амурской области космодром «Восточный».

Существует в штате Флорида с 1949 года. Первоначально на базе проходили испытания военных самолетов, а позже запуски баллистических ракет. Как полигон для космических запусков используется с 1957 года. Не прекращая военных испытаний, в 1957 году часть стартовых площадок предоставили в распоряжение NASA.

Здесь стартовали первые американские спутники, отсюда уходили в полет первые американские астронавты — Алан Шепард и Вирджил Гриссом (суборбитальные полеты по баллистической траектории) и Джон Гленн (орбитальный полет). После чего программа пилотируемых полетов переместилась на вновь отстроенный Космический центр, которому в 1963 году после гибели президента присвоили имя Кеннеди.

С этого момента база стала использоваться для запуска беспилотных кораблей, которые доставляли космонавтам на орбиту необходимые грузы, а также отправляли автоматические исследовательские станции на другие планеты и за пределы Солнечной системы.

Также с мыса Канаверел запускали и запускают спутники — как гражданские, так и военные. В связи с многообразием решаемых на базе задач здесь было построено 28 стартовых площадок. В настоящее время действующими являются 4. Еще две поддерживаются в рабочем состоянии в ожидании начала производства современных челноков Boeing X-37, которые должны «отправить на пенсию» ракеты «Дельта», «Атлас» и «Титан».

Был создан во Флориде в 1962 году. Площадь — 557 кв.км. Количество сотрудников — 14 тыс. человек. Комплексом безраздельно владеет NASA. Именно отсюда стартовали все пилотируемые корабли, начиная с полета в мае 1962 года четвертого астронавта Скотта Карпентера. Здесь была реализована программа «Аполлон», увенчавшаяся высадкой на Луне. Отсюда улетали и сюда же возвращались все американские корабли многоразового действия — челноки.

Сейчас все пусковые площадки находятся в режиме ожидания новой техники. Последний пуск состоялся в 2011 году. Однако Центр продолжает напряженно работать и по управлению полетом МКС, и над разработкой новых космических программ.

Находится в Гвиане — заморском департаменте Франции, расположенном на северо-востоке Южной Америки. Площадь — около 1200 кв.км. Космодром Куру был открыт Французским космическим агентством в 1968 году. За счет небольшого удаления от экватора отсюда можно запускать космические корабли со значительной экономией топлива, поскольку ракету «подталкивает» большая линейная скорость вращения Земли вблизи нулевой параллели.

В 1975 году французы пригласили Европейское космическое агентство (ESA) использовать Куру для реализации своих программ. В результате сейчас на содержание и развитие космодрома Франция отпускает 1/3 часть необходимых средств, все остальное лежит на ESA. При этом ESA является собственником трех из четырех пусковых установок.

Отсюда в космос уходят европейские узлы МКС и спутники. Из ракет здесь преобладает производящаяся в Тулузе евроракета «Ариан». Всего было произведено более 60 пусков. В то же время пять раз с космодрома стартовали наши «Союзы» с коммерческими спутниками.

КНР владеет четырьмя космодромами. Два из них решают только военные задачи, производя испытания баллистических ракет, запуск спутников-шпионов, испытания техники перехвата иностранных космических объектов. Два имеют двойное назначение, обеспечивая не только реализацию милитаристских программ, но и мирное освоение космического пространства.

Крупнейший и старейший из них — космодром Цзюцюань. Действует с 1958 года. Занимает площадь в 2800 кв.км.

Первое время на нем советские специалисты обучали китайских «братьев навек» премудростям военно-космического «ремесла». В 1960 году отсюда была запущена первая ракета ближнего действия — советская. Вскоре удачно стартовала ракета китайского производства, в создании которой также участвовали советские специалисты. После того, как произошел разрыв дружеских отношений между странами, деятельность космодрома застопорилась.

Лишь в 1970 году с космодрома был успешно запущен первый китайский спутник. Через 10 лет стартовала первая межконтинентальная баллистическая ракета. А в конце столетия отправился в космос первый спускаемый космический корабль без пилота. В 2003 году на орбите оказался первый тайквонавт.

Сейчас на космодроме действуют 4 из 7 стартовых площадок. 2 из них отведены исключительно для нужд министерства обороны. Ежегодно с космодрома Цзюцюань стартует 5−6 ракет.

Основан в 1969 году. Управляется Японским агентством аэрокосмических исследований. Расположен на юго-восточном побережье острова Танэгасима, на юге префектуры Кагосима.

Первый примитивный спутник был выведен на орбиту в 1970 году. С тех пор Япония, владея мощной технологической базой в области электроники, сильно преуспела в деле создания как эффективных орбитальных спутников, так и гелеоцентрических исследовательских станций.

На космодроме две пусковые площадки отведены под запуски суборбитальных геофизических аппаратов, две обслуживают тяжелые ракеты H-IIA и H-IIB. Именно эти ракеты доставляют на МКС научное оборудование и необходимое снаряжение. Ежегодно производится до 5 пусков.

Этот уникальный плавучий космодром, базирующийся на океанской платформе, был введен в действие в 1999 году. За счет того, что платформа базируется на нулевой параллели, запуски с нее наиболее выгодны энергетически за счет использования максимальной линейной скорости Земли на экваторе. Деятельность «Одиссея» контролирует консорциум, в который вошли Boeing, РКК «Энергия», украинское КБ «Южное», украинское ПО «Южмаш», производящий ракеты «Зенит», и норвежская судостроительная компания Aker Kværner.

«Одиссей» состоит из двух морских судов — платформы с пусковой установкой и судна, играющего роль центра управления полетами.

Стартовая площадка прежде была японской нефтедобывающей платформой, которую отремонтировали и переоборудовали. Ее размеры: длина 133 м, ширина 67 м, высота 60 м, водоизмещение 46 тыс. тонн.

Ракеты «Зенит», которые используются для запуска коммерческих спутников, относятся к среднему классу. Они способны выводить на орбиту более 6 тонн полезного груза.

За время существования плавучего космодрома на нем произведено около 40 пусков.

И все остальные

Помимо перечисленных космодромов существует еще 17. Все они считаются действующими.

Некоторые из них, пережив «былую славу», сильно сбавили активность, а то и вовсе заморожены. Некоторые обслуживают лишь военно-космический сектор. Есть и те, которые интенсивно развиваются и, очень может быть, станут со времени «законодателями космической моды».

Вот перечень стран, имеющих космодромы и их количество, включая перечисленные в этой статье

Россия — 4;

Китай — 4;

Япония — 2;

Бразилия — 1;

Израиль — 1;

Индия — 1;

Республика Корея — 1;

Для запуска космических аппаратов в космос, помимо стартовой площадки необходим комплекс сооружений, где проводятся предстартовые мероприятия: окончательная сборка и стыковка ракеты носителя и космического аппарата, предстартовое тестирование и диагностика, заправка топливом и окислителем.
Обычно космодромы занимают большую территорию и располагаются на значительном удалении от густонаселенных мест, для избежания ущерба в случае аварий и падения, отделяющихся в процессе полета ступеней.


Космодромы мира

Чем ближе точка запуска находится к экватору - тем меньше энергозатраты на вывод полезной нагрузки в космос. При запуске с экватора может сэкономить около 10 % топлива по сравнению с ракетой, стартующей с космодрома, находящегося в средних широтах. Поскольку на экваторе не так много государств, способных запускать ракеты в космос, появились проекты космодромов морского базирования.

Россия

Российская Федерация, являясь пионером в области освоения космического пространства, на данный момент удерживает первенство по количеству запусков. В 2012 году нашей страной было осуществлено 24 запуска ракет-носителей, к сожалению далеко не все успешные.

Крупнейшей «космической гаванью» России является арендованный у Казахстана космодром Байконур. Он расположен на территории Казахстана, в Кызылординской области между городом Казалинск и посёлком Джусалы, вблизи посёлка Тюратам. Площадь космодрома: 6717 км². Строительство космодрома началось в 1955 году. 21 августа 1957 года состоялся первый успешный запуск ракеты Р-7.


Схема космодрома «Байконур»

В советские времена в районе Байконура была создана огромная не имеющая мировых аналогов инфраструктура, включающая в себя помимо стартовых, подготовительных и контрольно-измерительных комплексов аэродромы, подъездные пути, служебные здания и жилые городки. Всё это после распада СССР досталось независимому Казахстану.

По официальным данным, эксплуатация космодрома в 2012 году обошлась около 5 млрд рублей в год (стоимость аренды комплекса «Байконур» составляет 115 млн долларов - около 3,5 млрд рублей в год, и ещё около 1,5 млрд рублей в год Россия тратит на поддержание объектов космодрома), что составляло 4,2 % от общего бюджета Роскосмоса на 2012 год. Кроме того, из федерального бюджета России в бюджет города Байконура ежегодно осуществляется безвозмездное поступление в размере 1,16 млрд рублей (по состоянию на 2012 год). В общей сложности космодром и город обходятся бюджету России в 6,16 млрд рублей в год.

В настоящий момент «Байконур» после передачи его военными в 2005 году, находится в ведении Роскосмоса. К концу 2007 года космодром покинули большинство военно-космических частей, на космодроме осталось около 500 российских военнослужащих.


Спутниковый снимок Google Earth: стартовая площадка №250

На космодроме имеется инфраструктура и стартовые сооружения позволяющие осуществлять запуск ракет-носителей:
- средние носители семейства «Союз», стартовая масса до 313000 кг (на базе Р-7) – площадки № 1(гагаринский старт), № 31.
-лёгкие носители «Космос», стартовая масса до 109000 кг - площадка № 41.
- средние носители семейства «Зенит», стартовая масса до 462200кг - площадка № 45.
-тяжелые носители «Протон», стартовая масса до 705 000кг - площадки № 81, № 200.
-лёгкие носители семейства «Циклон», стартовая масса до 193 000кг (на базе МБР Р-36) - площадка № 90.
- лёгкие носители «Днепр»», стартовая масса до 211000кг (совместная российско-украинская разработка на базе МБР Р-36М) – площадка № 175
-лёгкие носители «Рокот» и «Стрела», стартовая масса до 107 500 кг (на базе МБР УР-100Н) – площадка № 175.
-тяжелые носители «Энергия», стартовая масса до 2400 000кг (на данный момент не используется) – площадки № 110, № 250.


Спутниковый снимок Google Earth: "гагаринский старт"

Несмотря на регулярно получаемые выплаты за аренду космодрома и межгосударственные договорённости Казахстан периодически препятствует нормальной работе космодрома. Так, в 2012 году были отложены запуски европейского метеорологического космического аппарата MetOp-B (запуск планировался на 23 мая), российских спутников «Канопус-В» и МКА-ПН1, белорусского БКА, канадского ADS-1B и немецкого TET-1 (групповой запуск этих пяти аппаратов намечался на 7 июня), российского аппарата «Ресурс-П» (планировался на августе).
Причиной явилось длительное согласование казахстанской стороной использования поля падения первой ступени ракет-носителей в Кустанайской и Актюбинской областях (используемого при выведении спутников на солнечно-синхронную орбиту ракетой-носителем «Союз»).

Из-за позиции казахской стороны не был реализован проект создания совместного российско-казахстанского ракетно-космического комплекса «Байтерек» (на основе новой ракеты-носителя «Ангара») . Достигнуть компромисса по вопросу финансирования проекта не удалось. Вероятно, Россия будет строить стартовый комплекс для «Ангары» на новом космодроме «Восточный».


«Протон-К» выводит на орбиту модуль «Звезда» для МКС

Самым северным космодромом мира является «Плесецк», известный так же как «1-й Государственный испытательный космодром». Он расположен в 180 километрах к югу от Архангельска неподалёку от железнодорожной станции Плесецкая Северной железной дороги. Космодром занимает территорию 176 200 гектаров. Свою космодром ведет с 11 января 1957 года, когда было принято Постановление Совета Министров СССР о создании военного объекта с условным наименованием «Ангара». Космодром создавался как первое в СССР войсковое ракетное соединение, вооружённое межконтинентальными баллистическими ракетами Р-7 и Р-7А.


Семейство носителей Р-7

С 70-х до начала 90-х космодром Плесецк удерживал мировое лидерство по числу запусков ракет в космос (с 1957 по 1993 год отсюда было осуществлено 1372 запуска, тогда как с находящегося на 2-м месте Байконура лишь 917).

Однако с 1990-х годов ежегодное количество запусков с Плесецка стало меньше, чем с Байконура. Космодром находится в ведении военных, помимо вывода на орбиту ИСЗ с него периодически производятся испытательные пуски МБР.

Космодром имеет стационарные технические и стартовые комплексы отечественных ракет-носителей лёгкого и среднего класса: «Рокот», «Циклон-3», «Космос-3М» и «Союз».


Спутниковый снимок Google Earth: стартовая площадка носителей "Союз"

Так же на космодроме имеется испытательный комплекс, предназначенный для испытания межконтинентальных баллистических ракет, с ПУ шахтного типа.
Ведётся строительство стартовых и технических комплексов для ракет-носителей «Ангара» на базе СК «Зенит».


Запуск ракеты Циклон-3 с космодрома «Плесецк»

Космодром обеспечивает значительную часть российских космических программ, связанных с оборонными, а также научными и коммерческими пусками непилотируемых космических аппаратов.

Помимо основных космодромов «Байконур» и «Плесецк», запуск ракет носителей и вывод на околоземную орбиту космических аппаратов периодически осуществляется и с других космодромов.

Самым известным из них является космодром «Свободный». Основной причиной создания этого космодрома послужило то, что в результате распада СССР космодром Байконур оказался вне территории России и невозможность запуска тяжелых «Протонов» с космодрома Плесецк. Новый космодром было решено создать на базе расформированной 27-й Краснознаменной дальневосточной дивизии РВСН которая была ранее вооружена ранее БР УР-100. В 1993 её объекты были переданы в состав военно-космических сил. 1 марта 1996 указом президента здесь был образован 2-й Государственный испытательный космодром Минобороны РФ. Общая площадь этого объекта - около 700 км2.

Первый запуск ракеты-носителя «Старт 1.2» на базе БР «Тополь» с космическим аппаратом «Зея» состоялся 4 марта 1997 года. За всё время существования космодрома здесь было произведено пять запусков ракет.

В 1999 году было принято решение о строительстве на космодроме ракетно-пускового комплекса для ракеты-носителя «Стрела». Однако комплекс «Стрела» не прошёл государственную экологическую экспертизу из-за высокой токсичности применяемого в ней ракетного топлива - гептила. В июне 2005 года на заседании Совета безопасности РФ было решено в рамках сокращения вооружённых сил, ликвидировать космодром Свободный ввиду малой интенсивности запусков и недостаточного финансирования. Однако уже в 2007 году было решено создать здесь инфраструктуру для запуска ракет-носителей среднего класса. Будущий космодром получил имя - «Восточный». Предполагается, что здесь будут производиться коммерческие и научные запуски, а все военные запуски планируется производить из Плесецка.

Запуски легких ракет-носителей серии «Космос» и «Днепр» осуществлялись так же с полигона «Капустин Яр» и стартовой площадки «Ясный».

На полигоне «Капустин Яр» в Астраханской области в настоящее время проходят испытания перспективные средства ПВО. Помимо этого периодически проходят запуски ракет носителей серии «Космос» со спутниками военного назначения.

Комплекс «Ясный» - расположен на территории позиционного района «Домбаровский» РВСН в Ясненском районе Оренбургской области России. Используется для запуска космических аппаратов посредством ракет-носителей «Днепр». С июля 2006 года по август 2013 года было осуществлено шесть успешных коммерческих запусков.

Так же в России осуществлялись запуски космических аппаратов с подводных ракетоносцев стратегического назначения.
7 июля 1998 года с борта РПКСН «Новомосковск» проекта 667БДРМ «Дельфин», находясь в подводном положении, в акватории Баренцева моря были выведены на низкую околоземную орбиту два немецких коммерческих микро-спутника Tubsat-N. Это первый в истории освоения космического пространства вывод спутников на околоземную орбиту со стартом ракеты из-под воды.
26 мая 2006 года с борта РПКСН «Екатеринбург» проекта 667БДРМ «Дельфин», был успешно запущен ИСЗ «Компас 2».

Наиболее известным космодромом США безусловно является Космический центр имени Джона Фицджеральда Кеннеди. Он расположен на острове Мерритт во Флориде, центр космодрома располагается поблизости от Мыса Канаверал, посередине между Майами и Джексонвиллем. Космический центр Кеннеди - это комплекс сооружений для запуска космических аппаратов и управления полётами (космодром), принадлежащий НАСА. Размеры космодрома - 55 км в длину и около 10 км в ширину, площадь - 567 км².

Космодром был первоначально основан в 1950 году как полигон для испытания ракет. Расположение полигона было одним из наиболее удобных в США, поскольку отработавшие ступени ракет падают в Атлантический океан. Однако расположение космодрома связано с существенными природно-метеорологическими рисками. Здания и сооружения космического центра неоднократно серьёзно повреждались ураганами, а запланированные запуски приходилось откладывать. Так в сентябре 2004 года часть сооружений Космического Центра Кеннеди была повреждена ураганом Фрэнсис. Здание вертикальной сборки потеряло тысячу внешних панелей примерных размеров 1,2×3.0 м каждая. Была разрушена наружная обшивка площадью 3700 м². Крыша была частично сорвана и внутренние помещения обширно повреждены водой.


Вид сверху на район стартового комплекса № 39

Все запуски шаттлов Космический центр Кеннеди производил из стартового комплекса № 39. Центр обслуживают примерно 15 тыс. гражданских служащих и специалистов.

История этого космодрома неразрывно связана с американской пилотируемой программой освоения космического пространства. До июля 2011 года Космический Центр Кеннеди являлся местом для запуска кораблей «Спейс шаттл», использующих комплекс № 39 с инфраструктурой программы «Аполлон». Первым запуском был корабль «Колумбия» 12 апреля 1981 года. Центр - это также место для посадки орбитальных шаттлов - здесь есть посадочная полоса длиной 4,6 км.


Спейс шаттл «Атлантис»

Последний запуск космического челнока «Атлантис», состоялся 16 мая 2011 года. Тогда американский многоразовый корабль доставил на борт международной космической станции груз материально-технического снабжения, а также магнитный альфа-спектрометр.

Часть территории космодрома открыта для посещений, здесь расположены несколько музеев и кинотеатров и выставочных площадок. По территории закрытой для свободного посещения организованы автобусные экскурсионные маршруты. Стоимость автобусного тура - 38 долларов. Он включает в себя: посещение стартовых площадок комплекса № 39 и поездка в центр «Аполлон-Сатурн V», обзор станций слежения.

Центр «Аполлон-Сатурн V» - это огромный музей, построенный вокруг наиболее ценного экспоната выставки - реконструированного стартового аппарата «Сатурн V» и других относящихся к космосу экспонатов, таких, как капсула «Аполлон».

Запуски непилотируемых космических аппаратов осуществляются со стартовых площадок расположенных вдоль побережья, они эксплуатируются военно-воздушным силам США и являются частью базы ВВС США на мысе Канаверал, Эта база входит в состав Космического командования ВВС США. На мысе Канаверал расположено 38 стартовых площадок, из которых сегодня только 4 действующие. В настоящее время с космодрома стартуют ракеты Delta II и IV, Falcon 9 и Atlas V.


Спутниковый снимок Google Earth: стартовая площадка на мысе Канаверал

Отсюда 22 апреля 2010 года впервые состоялся успешный запуск беспилотного космического корабля многоразового использования Boeing X-37. Он был выведен на околоземную орбиту с помощью ракеты носителя Atlas V.
5 марта 2011 года аппарат был выведен на орбиту ракетой-носителем Atlas V , стартовавшей с мыса Канаверал. Согласно заявлениям ВВС США, с помощью второго аппарата X-37B будут отрабатываться сенсорные приборы и системы спутников. 16 июня 2012 года летательный аппарат приземлился на базе американских военно-воздушных сил Ванденберг в штате Калифорния, проведя 468 дней и 13 часов на орбите, облетев вокруг Земли более семи тысяч раз.
11 декабря 2012 года аппарат этого типа был запущен в космос в третий раз, где он и находится, по сей день.

X-37- предназначен для функционирования на высотах от 200-750 км, способен быстро менять орбиты, маневрировать, может выполнять разведывательные задачи, доставлять и возвращать небольшие грузы.

Вторым по размерам и важности объектом космической инфраструктуры США является -Военно-воздушная база Ванденберг. Здесь расположен объединённый космический командный центр. Это резиденция 14-го авиаполка, 30-го космического авиакрыла, 381-ой тренировочной группы и Западный стартовый и испытательный полигон, на котором производятся запуски спутников для военных и коммерческих организаций, а также проводятся испытания межконтинентальных баллистических ракет, в том числе «Минитмен-3».

Контрольно-тренировочные стрельбы боевыми ракетами, проводятся в основном в юго-западном направлении к атоллам Кваджалейн и Кантон. Общая протяженность оборудованной трассы достигает 10 тыс. км. Запуски ракет осуществляются в южном направлении. Благодаря географическому положению базы вся трасса их полета проходит над безлюдными районами Тихого океана.

16 декабря 1958 года с базы Ванденберг была запущена первая баллистическая ракета «Тор». 28 февраля 1959 года с Ванденберга запустили первый в мире полярно-орбитальный спутник «Дискаверер-1» на ракете-носителе «Тор-Агена». Ванденберг был выбран местом запуска и посадки Спейс шаттлов на западном побережье США.
Для запуска шаттлов были построены технические сооружения, здание сборки и перестроен стартовый комплекс №6 . В дополнение к этому существующая на базе взлётно-посадочная полоса длиной 2590 метров была удлинена до 4580 метров, чтобы облегчить посадку шаттлов. Полное обслуживание и реставрация орбитального аппарата производилась на находящемся здесь же оборудовании. Однако взрыв «Челленджера» повлёк за собой отмену всех полётов шаттлов с Западного побережья.

После заморозки программы шаттлов в Ванденберге, стартовый комплекс №6 очередной раз был переделан для запуска ракет-носителей Delta IV. Первым из космических аппаратов серии Delta IV , стартовавшим с площадки №6, была ракета запущенная 27 июня 2006 года, она вывела на орбиту разведывательный спутник NROL-22.


Запуск ракеты-носителя Delta IV с космодрома Ванденберг

В настоящее время сооружения базы Ванденберг используются для запуска спутников военного назначения, часть из них, например аппарат NROL-28 используется для «борьбы с терроризмом». NROL-28 запущен на высокоэллиптическую орбиту для сбора разведывательной информации о террористических группах на Среднем Востоке; например, датчики на борту таких спутников могут отслеживать передвижения военных транспортных средств по поверхности Земли. Вывод в космос этого спутника осуществлён носителем Atlas V, в котором использовались российские двигатели РД-180.

Для испытаний в рамках программы ПРО используется - Испытательный полигон Рейгана. Площадки для запусков расположены на атолле Кваджелейн и острове Уэйк. Он существует с 1959 года. В 1999 году полигон назван в честь бывшего президента США Рональда Рейгана.

С 2004 года на острове Омелек, входящем в состав полигона, находится стартовая площадка для ракеты-носителя Falcon 1, созданной компанией SpaceX. Всего с острова Омелек было предпринято 4 попытки орбитального запуска.

Первые три закончились неудачно, четвёртая ракета вывела на орбиту массо-габаритный макет спутника. Первый коммерческий запуск произошёл 13 июля 2009 года. Задержка была вызвана проблемами по совместимости ракеты и малазийского спутника RazakSat.
Ракета-носитель лёгкого класса Falcon 1 является частично многоразовой, первая ступень после разделения приводняется и может использоваться повторно.

Космодром «Уоллопс» расположен на территории принадлежащей НАСА, состоит из трёх отдельных участков общей площадью 25 км²: основной базы, центра на материке и острова Уоллопс, где находится стартовый комплекс. Главная база расположена на восточном побережье штата Виргиния. Был основан в 1945 году, первый удачный старт осуществлён 16 февраля 1961 года, когда на околоземную орбиту с помощью ракеты-носителя Scout X-1 был выведен научно-исследовательский спутник «Explorer-9». Имеет несколько стартовых комплексов.

В 1986 г. NASA развернуло на территории полигона контрольно-измерительный комплекс для слежения и управления полетом КА. Несколько РЛС с диаметром антенн 2,4-26 м обеспечивают прием и высокоскоростную передачу поступающей с объектов информации непосредственно их владельцам. Технические возможности комплекса позволяют проводить траекторные измерения объектов, находящихся на удалении 60 тыс. км, с точностью З м по дальности и до 9 см/с по скорости.
За годы существования с территории станции было произведено свыше 15 тыс. запусков ракет различных типов, в последнее время производится около 30 стартов в год.

С 2006 года часть полигона арендуется частной аэрокосмической корпорацией и используется для коммерческих запусков под названием «Среднеатлантический региональный космопорт». В 2013 году с космодрома Уоллопс ракетой-носителем Minotaur-V к Луне был запущен зонд Lunar Atmosphere and Dust Environment Explorer.
Так же здесь осуществляются запуски РН «Антарес» в их первой ступени установлены два кислород-керосиновых ракетных двигателя AJ-26 - разработанная компанией Аэроджет и лицензированная в США модификация двигателя НК-33 для использования на американских ракетах-носителях.


Ракета-носитель «Антарес»

По состоянию на 31 марта 2010 года фирмой «Аэроджет Рокетдайн» было закуплено у СНТК им. Кузнецова около 40 двигателей НК-33 по цене 1 млн. долларов США.

Другим коммерческим космодромом стал Стартовый комплекс Кадьяк- расположенный на одноимённом острове у берегов Аляски. Он создан для запуска лёгких ракет по суборбитальной траектории и вывода малых космических аппаратов на полярную орбиту.
Первый экспериментальный запуск ракеты с космодрома состоялся 5 ноября 1998 года. Первый орбитальный пуск состоялся 29 сентября 2001 года, когда ракета-носитель «Афина-1» вывела на орбиту 4 малых спутника.


Пуск РН «Афина-1» со стартовой площадки на о.Кадьяк. 30.09.2001 г.

Несмотря на «коммерческое» назначение космодрома с него регулярно производятся запуски ракет-носителей «Минотавр». Семейство американских, полностью твердотопливных ракет-носителей «Минотавр» разработана компанией Орбитальная научная корпорация по заказу ВВС США на основе маршевых ступеней МБР «Минитмен» и «Пискипер».


Ракета-носитель «Минотавр»

Согласно законам США запрещающим продажи правительственного оборудования, РН «Минотавр» может использоваться только для запусков правительственных спутников и не доступна для коммерческих заказов. Крайний успешный запуск Minotaur V состоялся 6 сентября 2013 года.

Помимо выведения в космос грузов с помощью ракет-носителей, в США реализуются и другие программы. В частности на орбиту выводились объекты с помощью ракет серии «Пегас», запускаемых с борта самолёта «Старгейзер»- модифицированного Lockheed L-1011.

Система разработана компанией Orbital Sciences Corporation, которая специализируется на оказании коммерческих услуг по доставке объектов в космос.

Другим примером частной инициативы является разработанный компанией Scaled Composites LLC, многоразовый аппарат Space Ship One .

Взлёт осуществляется с помощью специального самолёта White Knight (Белый Рыцарь). Затем происходит отстыковка и Space Ship One поднимается на высоту около 50 км. В космосе Space Ship One находится около трёх минут. Полёты осуществляются с частного аэрокосмического центра «Мохаве» в интересах «космического туризма».

В 2012 году в США осуществлено 13 запусков ракет-носителей. Уступая по этому показателю России в США активно ведутся работы по созданию перспективных ракет-носителей и многоразовых космических аппаратов.

По материалам:
http://geimint.blogspot.ru/2007/07/fire-from-space.html
http://ru.wikipedia.org/wiki/Космодром
http://georg071941.ru/kosmodromyi-ssha
http://www.walkinspace.ru/blog/2010-12-22-588
Все спутниковые снимки любезно предоставлены Google Планета Земля

Введение

Подсчитано, что в современную эпоху за каждые 10-15 лет объем научной информации, имеющейся в распоряжении человечества, приблизительно удваивается. И это не простой статистический факт - это закон прогрессивного развития общества. Чтобы успешно удовлетворять разнообразные потребности человечества, наука и техника должны двигаться вперед именно с такой скоростью. Но для этого необходимо непрерывное увеличение объема полезной информации о явлениях окружающего нас мира. Чтобы выполнить это условие, нужно не только постоянно углублять обычные «земные» исследования, но и всемерно расширять область, из которой эта информация черпается.

Целые тысячелетия понадобились людям, чтобы выяснить, что представляет собою наша Земля и какое положение занимает она во Вселенной. Сотни лет трудились они, чтобы заложить основы механики, физики, математики, астрономии, и этот титанический труд не пропал даром. Он подготовил тот поразительный бросок вперед, который совершила наука на протяжении последних десятилетий, бросок, который привел к осуществлению космических полетов.

Для нахождения ответов на эти вопросы человек обраитился к Космосу.

На первых порах задача решалась с помощью пассивных наблюдений космических процессов с Земли. Когда же появились технические предпосылки для осуществления космических полетов, начался и непосредственный штурм космического пространства.

Как известно, этот штурм был начат в 1954 г. с началом строительства первого в мире Космодрома и запуском первого советского искусственного спутника Земли и с тех пор успешно развивается.

Прорыв в космос явился важнейшим этапом в истории цивилизации, этапом, который должен оказать и уже оказывает огромное влияние на развитие науки и техники. Перед человечеством открылись увлекательнейшие перспективы, неизведанные возможности.

Значение выдающихся достижений науки состоит не только в том, что они позволяют решать всевозможные практические задачи, но прежде всего в том, что они дают возможность двигаться вперед более быстрыми темпами.


1. Общие сведения о космодромах


.1 Назначение космодрома


Земные пути ракет заканчиваются на космодромах. Здесь ракеты и космические аппараты собирают воедино из отдельных частей, проверяют, готовят к пуску и, наконец, отправляют в космос. Обычно космодромы занимают довольно большую территорию. Место для строительства космодрома выбирается с учетом многих, часто противоречивых, условий. Космодром должен быть достаточно удален от крупных населенных пунктов, ведь отработанные ракетные ступени вскоре после старта падают на землю.

Трассы ракет не должны препятствовать воздушным сообщениям, и в то же время нужно проложить их так, чтобы они проходили над всеми наземными пунктами радиосвязи. Учитывается при выборе места и климат. Сильные ветры, высокая влажность, резкие перепады температур могут значительно усложнить работу космодрома.

Каждая страна решает эти вопросы в соответствии со своими природными и другими условиями. Поэтому, скажем, советский космодром Байконур расположен в полупустыне Казахстана, первый французский космодром был построен в Сахаре, американский - на полуострове Флорида, а итальянцы создали у берегов Кении плавучий космодром.

Космодром - это специально оборудованная территория, занимающая площадь от нескольких сотен квадратных метров, как, например, в случае морского комплекса, до нескольких сотен квадратных километров, с размещенными на ней специальными сооружениями и технологическими системами, предназначенными для сборки, испытаний, подготовки и запуска ракет-носителей, космических кораблей и межорбитальных станций.

Крупный современный космодром включает в себя стартовые, технические, посадочные, командно-измерительные комплексы, научно-исследовательские и испытательные подразделения, стендовые базы, информационно-вычислительные центры, командные пункты и, как правило, комплекс предполетной подготовки и послеполетной реабилитации космонавтов. Кроме того, космодром должен иметь ряд вспомогательных объектов - аэродрома, заводы по производству компонентов топлив, теплоэлектростанции, промышленные и сельскохозяйственные предприятия, железнодорожные и автомобильные коммуникации, а также поля падения отделяющихся ступеней ракет-носителей и элементов космических аппаратов и жилой город - административный центр с медицинскими, культурными, учебными, спортивными, торгово-бытовыми и другими учреждениями. Обслуживающий персонал космодрома может состоять из нескольких десятков тысяч человек.


1.2 Структура и технологии космодрома


.2.1 Технический комплекс космодрома

Технический комплекс - это часть специально оборудованной территории космодрома с размещенными на ней зданиями и сооружениями, оснащенными специальным технологическим оборудованием и общетехническими системами. Оборудование технического комплекса позволяет обеспечить прием, сборку, испытание и хранение ракетно-космической техники, а также заправку компонентами топлива и сжатыми газами космических аппаратов и разгонных блоков, их стыковку с ракетами-носителями и транспортировку собранного комплекса на старт.

В специальных вагонах элементы ракетно-космической техники с заводов-изготовителей доставляются в монтажно-испытательный корпус технического комплекса, где производится их разгрузка с помощью подвижных и стационарных разгрузочно-погрузочных средств.

Монтажно-испытательный корпус (МИК) - основной элемент технического комплекса, оснащенный двумя видами оборудования: механо-сборочным и контрольно-испытательным. МИК представляет собой многопролетное высотное каркасное промышленное сооружение, имеющее крановое оборудование большой грузоподъемности. В пролетах МИКа размещается механо-сборочное оборудование, а также производятся расконсервация, сборка и проверка ракетно-космических систем. По периметру корпуса располагаются различные лаборатории с контрольно-проверочной аппаратурой автономной и комплексной проверки космической техники.

Размеры и оснащение монтажно-испытательных корпусов зависят от типа собираемых и испытываемых ракет (космических аппаратов). Современный МИК имеет внушительные размеры. Например, МИК для сборки и проверки ракеты-носителя "Энергия" - это четырех-пролетный корпус длиной 250 м, шириной 112 м и высотой около 50 м. По периметру корпуса на четырех этажах расположены лаборатории, занимающие общую площадь 48 тыс. кв. м. При вертикальной технологии сборки ракет высота МИКа достигает 160 м.

В МИКе составные части ракет-носителей и космических аппаратов подвергаются внешнему осмотру, предварительным поэлементным испытаниям и подаются на сборку. Сборка их производится, как правило, на отдельных, не связанных между собой технологических линиях. При большой интенсивности подготовки и проведения пусков для сборки и испытаний ракет-носителей и космических аппаратов могут быть предусмотрены отдельные монтажно-испытательные корпуса.

С помощью монтажных средств и кранового оборудования осуществляются сборка космических средств и подача их на пневмовакуумные испытания. Такие испытания проводятся с целью выявления негерметичности всех гидро- и газопроводов и герметичных отсеков ракет-носителей и космических аппаратов. Электрические испытания проводятся с целью определения целостности всех электрических цепей и правильности функционирования систем управления и всех элементов с электропитанием.

Собранный и проверенный космический аппарат направляется на заправочную станцию для продолжения цикла подготовки к запуску. Заправочная станция - элемент технического комплекса, представляющий собой комплекс сооружений и технологических систем и предназначенный для заправки разгонных блоков и космических аппаратов компонентами ракетных топлив, сжатыми газами, спецжидкостями. Здесь находятся хранилища горючего, окислителя и сжатых газов; системы термостатирования компонентов, вакуумиро-вания, газового контроля, измерений, автоматизированной заправки, нейтрализации токсичных паров и жидкостей, пожаротушения, связи, вентиляции и т.д. Заправочная станция является технологическим объектом космодрома, наиболее насыщенным взрывоопасными, пожароопасными и токсичными элементами.

Стыковка собранной и проверенной ракеты-носителя с заправленным космическим аппаратом осуществляется в том же монтажно-испытательном корпусе, где производилась их сборка.


1.2.2 Стартовый комплекс космодрома

Стартовый комплекс - составная часть и основной технологический объект космодрома, представляющий собой специально оборудованную территорию, оснащенную технологическими и общетехническими системами. Весь этот многочисленный и уникальный комплекс оборудования обеспечивает транспортировку, установку в стартовое устройство ракеты-носителя с космическим аппаратом, заправку компонентами топлива и сжатыми газами, предстартовые проверки, подготовку к пуску и пуск ракетно-космического комплекса.

Стартовый комплекс, как правило, включает в себя пристартовые хранилища ракет-носителей и космических аппаратов, транспортно-установочные агрегаты (или стационарные установщики), стартовые сооружения с пусковыми устройствами, системы заправки компонентами ракетных топлив, средства газоснабжения, аварийного спасения обслуживающего персонала и членов экипажей. Кроме того, стартовый комплекс оснащается вспомогательными сооружениями и системами: холодильными центрами, автономными электростанциями, узлами связи, системами телевидения и киносъемки, автомобильными и железными дорогами и т.д.

Мозговым центром каждого стартового комплекса является командный пункт. Там обрабатывается вся собранная информация о состоянии и готовности всех технологических и общетехнических систем старта, бортовой аппаратуры и агрегатов ракеты-носителя и космического аппарата, кондиционности и количестве компонентов ракетных топлив, газов и спецжидкостей, а также информация о готовности всех служб космодрома (метео- и топогеодезического обеспечения, аварийно-спасательных и поисковых команд, групп тылового обеспечения, эвакуации и т.д.) к предстоящим работам. Здесь же размещается контрольно-проверочная и испытательная аппаратура предстартовой подготовки космического комплекса.

На основании результатов обработки постоянно поступающей телеметрической информации (до нескольких тысяч параметров в секунду при комплексных испытаниях) принимаются решения и выдаются команды на продолжение работ по технологическому графику пуска комплекса или его корректировке.

Командный пункт обычно представляет собой находящееся под землей четырех- или пятиэтажное здание, начиненное электроникой и десятками километров кабеля. Отсюда ведется управление всей предстартовой подготовкой к пуску и выдается команда на запуск ракет-носителей и космических аппаратов.

Необходимо особо подчеркнуть, что каждое из сооружений технического или стартового комплекса можно приравнять к промышленному предприятию средних размеров. Например, система заправки жидким кислородом ракеты-носителя "Энергия" включает в себя:

·систему приема и хранения жидкого кислорода вместимостью несколько тысяч тонн;

·систему переохлаждения и термостатирования жидкого кислорода, обеспечивающую охлаждение окислителя на 6...8 °С ниже точки кипения и поддерживающую заданную температуру с точностью до 0,5...1 °С;

·систему заправки жидким кислородом, обеспечивающую подачу компонента со скоростью 6...8 тонн в минуту;

·систему вакуумирования теплоизоляции криогенных емкостей и трубопроводов до 10"~6 мм рт. ст.;

·систему автоматического непрерывного контроля газовой среды;

·систему автоматического пожаро- и взрывопредупреждения;

·автоматизированную систему управления всеми технологическими операциями;

·систему контроля кондиционности хранящегося и заправляемого кислорода и т.д.

Таким образом, стартовый комплекс можно сравнить с крупным промышленным комбинатом, раскинувшимся на десятках квадратных километров и включающим в себя два-три десятка крупных заводов (цехов). И уж если дальше продолжать это сравнение, то основная "продукция" такого комбината - безаварийный пуск космического комплекса в точно заданное время.


1.2.3 Командно-измерительный комплекс космодрома

В последний период подготовки космического комплекса на старте и после пуска в работу включаются специалисты еще одной важной части космодрома - командно-измерительного комплекса (КИК), обеспечивающего траекторные измерения движения ракеты-носителя с космическим аппаратом на активном участке полета, а также получение, обработку и анализ данных о работе бортовых систем, комплекса в целом, объективных показателей о состоянии космонавтов.

В связи с ростом числа космических аппаратов, постоянно функционирующих на орбитах, изменялись функции, структура, техническая оснащенность командно-измерительного комплекса, который в последнее время все чаще правильно называют наземным автоматизированным комплексом управления (НАКУ). Это универсальный комплекс наземных, морских и воздушных средств и аппаратуры для обмена командно-программной, телеметрической и траекторной информацией с любым типом космического аппарата и управления всей орбитальной группировкой, находящейся в данный момент в космосе.

КИК космодрома включает в себя пристартовые измерительные пункты и десятки измерительных пунктов вдоль трасс полета космических комплексов; баллистический центр, автоматические системы сбора, обработки, передачи и отображения информации; информационно-вычислительные центры; системы связи и телеобмена с космонавтами. В состав командно-измерительного комплекса космодрома входят также кинотеодолитные станции (пункты), предназначенные для непосредственного визуального слежения и съемки полета космического комплекса на начальном участке.

Вся информация, получаемая в ходе нормального или аварийного полета, обрабатывается в вычислительном центре. Результаты этой обработки являются основным беспристрастным документом, характеризующим полет, и исходным материалом для принятия решения по конкретному космическому объекту. В связи с этим наибольшую ценность имеет информация измерительного комплекса при летно-конструкторских испытаниях, когда "незаметное" отклонение любого параметра может привести к срыву целой программы.


1.2.4 Посадочный комплекс космодрома

Одна из основных причин высоких затрат на космос - однократное использование ракет-носителей и космических аппаратов. Например, американская ракета "Сатурн-5", обеспечившая программу полетов космических кораблей "Аполлон" к Луне, стоимостью 280 млн дол. "расходуется" за несколько минут. В конце 1960-х гг. начались работы по созданию космических средств многократного использования. Наибольшую известность в этом направлении получили орбитальные корабли типа "Шаттл" и "Буран".

Практический переход на многоразовые космические средства в перспективе несомненно даст существенную экономию. Ну, а вначале, как и всякая новая научно-техническая идея, многоразовые системы требуют миллиардных затрат на создание их составных элементов, ракет-носителей и космических аппаратов, космических комплексов в целом, на строительство и оснащение специальных посадочных (или стартово-посадочных) комплексов.

Современный посадочный комплекс - это часть специально оборудованной территории космодрома с размещенным на ней комплексом зданий и сооружений, оснащенных технологическим и общетехническим оборудованием. Посадочный комплекс предназначен для приема космических кораблей, аппаратов, ступеней и элементов ракет-носителей многоразового использования. На посадочном комплексе производится также комплекс мероприятий послеполетной профилактики спускаемых объектов и подготовки их к транспортировке на техническую позицию.

В состав космодромов входят и полигоны посадки космических аппаратов. Они, конечно, не такие сложные, грандиозные и дорогостоящие, как посадочные комплексы многоразовых космических кораблей, но тем не менее достаточно технически оснащенные и оборудованные в инженерном отношении. Это довольно большие районы, предназначенные для штатной посадки космических объектов или спускаемых капсул с материалами. Полигоны посадки выбираются, как правило, в равнинной, малонаселенной, без крупных водоемов местности.

Трасса полигона посадки на протяжении нескольких тысяч километров оснащается средствами связи, наблюдения, контроля и выдачи целеуказаний о траектории спуска космического объекта поисково-спасательным службам. Полигон посадки должен обеспечить своими средствами контроль спуска, обнаружение объекта и его эвакуацию.

Посадочными комплексами можно условно назвать и те районы Карагандинской и Джезказганской областей Казахстана, где приземлялись первые пилотируемые корабли типа "Восток", "Восход", многочисленные космические аппараты серии "Космос", различные модификации транспортных космических кораблей "Союз".

В США в качестве полигонов посадки космических аппаратов выбраны районы акватории океана, что накладывает свои особенности на конструкцию космического аппарата и средства его поиска и эвакуации.


1.2.5 Обеспечение безопасности работ на космодроме

Космодром - зона повышенной опасности. Это обусловлено и токсичностью топлив, и высокими давлениями газов в различных емкостях и системах, и пожаро- и взрывоопасностью криогенных жидкостей и газов, и повышенными шумами и вибрациями, и высокими электрическими напряжениями, и излучениями антенн и т.д.

В связи с этим на космодроме существует система мероприятий, обеспечивающих безопасность проводимых работ. Условно эти мероприятия можно разделить на четыре группы.

Мероприятия, заложенные в проектных решениях при создании всего космодрома и отдельных его комплексов. Здания и сооружения размещаются на безопасном расстоянии друг от друга, их конструкция предусматривает защищенность от воздействия ударной волны определенной силы и полную автономность жизнеобеспечения на несколько суток. При необходимости обеспечиваются пожаро и взрывобезопасность, герметичность, звукоизоляция помещений.

Мероприятия, заложенные в конструкцию технологических систем и агрегатов. К ним относятся выбор наиболее прочных и стойких к агрессивным средам материалов, внедрение вычислительных систем вместо насосных, применение сварных соединений, скоростных лифтов и специальных средств спасения, оснащение систем и сооружений быстродействующими и эффективными средствами контроля, сигнализации и ликвидации аварийных процессов, создание рациональной и безопасной технологии работ на всех участках.

Мероприятия, предусматривающие создание и использование коллективных и индивидуальных средств защиты. Проектируются и строятся специальные системы спасения космонавтов и персонала стартовых команд, убежища и укрытия, средства пожаротушения на базе тяжелой бронетехники, применяются индивидуальные средства защиты кожи и органов дыхания при работах с агрессивными жидкостями и газами.

Мероприятия организационного характера. К ним относятся обучение обслуживающего персонала; контроль соблюдения мер безопасности; создание системы допусков в сооружения и к технологическим системам, ограничивающей число людей, участвующих в конкретных операциях; своевременное оповещение о проведении опасных работ; организация эвакуации людей из опасных зон и т.п.

Обычно при организации и проведении каких-либо испытательных работ на космодромах устанавливаются три-четыре зоны безопасности, и в зависимости от характера и степени риска в каждой зоне устанавливается свой режим допуска к работам, осуществляются те или иные мероприятия. Так, например, стартовый комплекс СК-39 на Восточном испытательном полигоне США для пусков ракетно-космической системы "Сатурн-5" - "Аполлон" разбит на четыре зоны:

·зона непосредственно в районе стартового сооружения с возможным избыточным давлением во фронте ударной волны в случае взрыва ракеты-носителя на старте около 10 атм и уровнем шума 135 дБ;

·зона безопасности с уровнем шума от 135 до 120 дБ (примерно 2 км от старта);

·зона общего назначения с уровнем шума менее 120 дБ (примерно 5 км);

·промышленная зона со всеми вспомогательными техническими сооружениями (от 5 до 10 км).

При проведении пусков ракеты-носителя "Энергия" и многоразового ракетно-космического комплекса (МРКК) "Энергия" - "Буран" с космодрома Байконур в районе стартового комплекса были установлены также четыре зоны безопасности:

·радиусом два километра вокруг пускового устройства. Из этой, наиболее опасной зоны, эвакуация обслуживающего персонала заканчивалась за 12 ч до пуска. Все дальнейшие технологические операции по заправке, подготовке к пуску и сам пуск производились дистанционно из защищенных бункеров управления;

·радиусом пять километров вокруг пускового устройства. Эвакуация отсюда заканчивалась за 8 ч до пуска, одновременно с началом заправки ракеты-носителя жидким водородом;

·радиусом 8,5 км, освобождалась за 4 ч до старта;

·радиусом 15 км, подлежала эвакуации за 3 ч до старта. За ее пределами гарантировалась безопасность человека на открытой местности в случае взрыва ракеты-носителя на старте.

Кроме того, при пуске МРКК комплекса "Энергия" - "Буран" 15 ноября 1988 г. был принят комплекс мер по обеспечению безопасности на трассе выведения и полета комплекса.

Таковы общая структура, задачи, состав технических и технологических средств космодромов, предназначенных для запусков ракет-носителей с космическими аппаратами на борту.


Рисунок 1 - Основные технические сооружения космодрома


А, Б, В - стартовые позиции космодрома: Г - техническая позиция; 1 - кабель-заправочная башня; 2 - башня обслуживания; 3 - станция заправки топливом космических объектов; 4 - монтажно-испытательный корпус космических объектов; 5 - здание вертикальной сборки; 6 - компрессорная станция; 7 - выносной командный пункт; 8 - хранилище и заправочная станция окислителя; 9 - ресиверная; 10 - бассейн с водой системы пожаротушения; 11 - командный пункт; 12 - газоотражатель; 13 - газоотводный канал; 14 - пусковая система; 15 - башня для приборов наведения ракеты по азимуту; 16 - гусеничный транспортёр; 17 - радиолокационная станция; 18 - укрытие для расчёта;

20 - хранилище и заправочная станция горючего;

2. Характеристики основных космодромов в мире


.1.1 Космодром «Байконур» Казахстан

Этот космодром арендуется Россией у Республики Казахстан за сумму около 100 млн долларов США в год. Административный центр - г. Байконур (бывш. Ленинск), железнодорожная станция Тюратам.

История первого в мире космодрома началась с Постановления ЦК КПСС и Совета Министров СССР от 12 февраля 1955 года. Первый СК -для межконтинентальной ракеты Р-7 - введен в эксплуатацию в 1957 году.

Площадь космодрома достигается 6 717 км2. Он включает центр, левый и правый фланги, а также поля падения (Рис.3). До настоящего времени Байконур был и остается единственной базой, которая позволяет запускать российские пилотируемые корабли и выводить на орбиту крупные спутники и межпланетные станции. Примерно 40 % всех КА бывшего СССР и России запускались отсюда.

Сейчас на Байконуре имеется девять стартовых комплексов с пятнадцатью ПУ, 34 технических комплексов, три заправочные станции для РН, КА и разгонных блоков (РБ), азотно-кислородный завод суммарной производительностью до 300 т криогенных продуктов в сутки, и измерительный комплекс с мощным вычислительным центром. Это оборудование даёт возможность запускать РН тяжёлого («Протон»), среднего («Зенит», «Союз» и «Молния») и легкого («Циклон») классов. Ещё два типа ракет легкого класса - «Днепр» и «Рокот» - стартуют из шахтных ПУ.

Все ракеты собираются и стыкуются с РБ и КА в горизонтальном положении. Подготовка и пуск РКН «Зенит», «Циклон», «Днепр» и «Рокот» осуществляется с применением высокого уровня автоматизации, а для «Зенита» реализованы по технологии «безлюдного старта». Тип подготовки - мобильный, за исключением РН «Днепр», для которой используется фиксированный метод подготовки. Для РН «Союз» и «Протон» характерно значительное количество «ручных» операций.

По соглашению между Россией и Казахстаном от 2004 года, на космодроме Байконур планируется создание комплекса «Байтерек» для запуска РН тяжёлого класса «Ангара-А5». Комплекс будет создан путём реконструкции У КС С.


Рисунок 2 - Схема космодрома Байконур

стартовый комплекс технический

На рисунке 3 показано расположение основных объектов в на космодроме Байконур. Среди них:

Аэропорт Крайний;

Город Ленинск;

Измерительный комплекс «Вега»;

Измерительный комплекс «Сатурн»;

Кислородно-азотный завод;

Городок испытателей;

Стартовый комплекс РН «Протон»;

Технический комплекс РН «Энергия»;

9 - технический комплекс ОК «Буран <#"justify">2.1.2 Крупные космодромы в России


.1.2.1 Космодром "Плесецк"

Космодром "Плесецк" (1-й Государственный испытательный космодром) расположен в 180 километрах к югу от Архангельска неподалеку от железнодорожной станции "Плесецкая" Северной железной дороги. Располагаясь на платообразной и слегка холмистой равнине, он занимает площадь 1762 квадратных километра, простираясь с севера на юг на 46 километров и с востока на запад на 82 километра с центром, имеющим географические координаты 63 градуса северной широты и 41 градус восточной долготы.

Основан в 1960 году как первая отечественная ракетная база МБР Р-7 и Р-7А (объект "Ангара"). При выборе местоположения в первую очередь учитывались:

Досягаемость территорий вероятных противников; 2. возможность проведения и контроля испытательных пусков в район Камчатки; 3. необходимость в особой скрытности и секретности.

Как космодром имеет сложное геополитическое положение и разветвленную структуру (Рис.4).

Космическую деятельность ведет с запуска КА "Космос-112" 17 марта 1966 года. Имеет стационарные технические и стартовые комплексы всех типов отечественных ракет-носителей легкого и среднего класса. Ведется строительство стартовых и технических комплексов для ракеты-носителя "Ангара". Обеспечивает основную часть космических программ, связанных с оборонными, народнохозяйственными, научными и коммерческими пусками непилотируемых КА.

Рисунок 3 - Схема Космодрома Плесецк


2.1.2.2 Космодром Свободный (Восточный)

Этот космодром расположен в Амурской обл. (Свободненский район), ЗАТО пос. Углегорск, 50 км к северу от г. Свободный, ж.-д. ст. Ледяная.

В конце 1992 года Военно-космические силы (ныне - Космические войска МО РФ) поставили перед руководством Министерства обороны России вопрос о необходимости создания и выборе места расположения нового российского космодрома, поскольку в результате распада СССР космодром Байконур оказался вне российской территории.

В соответствии с выводами рекогносцировочной комиссии директивой Минобороны РФ от 30 ноября 1993 года объекты войсковых частей и подразделений дислоцированной здесь дивизии РВСН были переданы в состав Военно-космических сил, а на их базе образован Главный центр испытаний и применения космических средств. 1 марта 1996 года Указом Президента РФ преобразован во «Второй государственный испытательный космодром Министерства обороны РФ (Свободный)».

Перед Военно-космическими силами были поставлены задачи по подготовке к пуску в 1996-1997 гг. РН легкого класса «Рокот» и «Старт», разработке эскизного проекта СК носителей тяжёлого класса «Ангара». Первый запуск из Свободного состоялся 4 марта 1997 года

Однако по финансовым причинам планы реализованы не были: с космодрома произведено всего восемь пусков РН легкого класса «Старт-1» (создана в МИТ на базе технологического задела по баллистическим ракетам «Тополь» и «Пионер»). В феврале 2007 года Указом Президента РФ космодром Свободный был закрыт.

Учитывая ряд обстоятельств геополитического характера, а также то, что в Свободном остались пять шахтных ПУ ракет PC-18, в середине 2007 года начались рекогносцировочные изыскания по выбору места нового гражданского космодрома на Дальнем Востоке.

В результате выбор пал на район Углегорска. Указом Президента РФ от 6 ноября 2007 года решено создать космодром Восточный (Рис.5).

Площадь космодрома без полей падения не превышает 750 км2. На территории Восточного планируется создание СК для пусков РН среднего класса повышенной грузоподъёмности и многоразовых ракетно-космических систем (МРКС) грузоподъёмностью до 40 и более тонн - по одному комплексу с двумя ПУ для каждой. По некоторым данным, общее количество СК на космодроме может достичь семи. В перспективе, возможны пуски тяжёлых и сверхтяжёлых РН с массой полезного груза 60-100 тонн. В состав наземной инфраструктуры также будут включены:

·Технические комплексы РН и КА, в т. ч. комплекс межполётного обслуживания МРКС.

·Комплексы подготовки космонавтов, поисково-спасательной службы и объектов транспортной (авиационной, автомобильной и железнодорожной) инфраструктуры.

·Заправочный комплекс, в т. ч. включающий азотно-кислородный и водородный заводы.

·Измерительный комплекс.

·С космодрома возможны запуски на орбиты с наклонением от 51 до 110 град.

Рисунок 4 - Схема космодрома Восточный


2.1.2 Космодром Куру, Франция

Космодром Куру (фр. Kourou), официально известный как Гвианский космический центр находится на северо-востоке Южной Америки, во Французской Гвиане . Космодром расположен на побережье Атлантического океана , на полосе, приблизительно, длиной 60 км и шириной 20 км между городками Куру и Синнамари , в 50 км от столицы Французской Гвианы Кайенны .

В 1964 году правительство Франции выбрало Куру из 14 представленных проектов расположения космодрома. Его строительство Франция начала в 1965 году по инициативе Французского космического агентства (CNES). Первый запуск с космодрома в Куру был осуществлен 9 апреля 1968 года .

В 1975 году , когда образовалось Европейское космическое агентство (ESA), французское правительство предложило ESA использовать космодром Куру для европейских космических программ. ESA, рассматривая космодром Куру как свою составную часть, финансировало модернизацию пусковых площадок Куру под программу космических кораблей «Ариан» (Рис.6). В настоящее время основные пусковые площадки космодрома являются собственностью ESA.

С тех пор ESA продолжает финансировать две трети годового бюджета космодрома, который идёт на текущее обслуживание полётов и поддержание сервиса космодрома на современном уровне. ESA также финансирует новые проекты на космодроме, такие как пусковые комплексы и промышленные предприятия, которые требуются для запуска новых носителей, таких как «Вега « или для использования «Союзами».


Рисунок 5 - Схема Космодрома Куру


2.1.3 Космодромы Тайюань и Танегасима

Тайюань расположен в 300 км к западу от Пекина, северо-запад провинции Шаньси, близ г. Тайюань. Основной китайский космодром для запусков «полярных» спутников на орбиты с наклонением до 99 град. Имеет СКдля пусков носителей CZ-4A, CZ-2C.

Стан расположен на юге Китая в провинции Сычуань, у подножия хребта Даляншань. Штаб-квартира космодрома расположена в г. Сичан. Основной китайский космодром для запуска «геостационарных» спутников. Осуществляются пуски носителей CZ-2E, CZ-3 среднего класса. На космодроме имеется два стартовых комплекса.

Рисунок 6- Схема полигона Таюань


Танегасима расположен на одноименном острове в 50 км к югу от о. Кюсю в префектуре Кагосима. Первый космический запуск состоялся в 1975 году.

В настоящее время с единственного СК (второй - законсервирован) осуществляются запуски КА на геопереходные и полярные (наклонением от 30 до 99 град) орбиты с использованием ракет Н-2А и Н-2В. Ступени ракеты собираются в МИКе в вертикальном положении, и также вывозятся на СК на мобильном транспортере.


Рисунок 7 - Схема полигона Танегасима


2.1.4 Полигон Вумера

Полигон Вумера располагается на юге Австралийского материка в пустынной местности в районе г. Вумера (штат Южная Австралия, 500 км к северо-западу от Аделаиды, 200 км к югу от озера Эйр). Площадь полигона- 100 000 км2.

Создан в 1946 году совместными усилиями Великобритании и Австралии как центр для испытания управляемых летательных аппаратов. 3 ноября 1961 года был выбран в качестве первого европейского космодрома и функционировал с 1967 года. Использовался Великобританией, Европейской организацией по созданию ракет-носителей ELDO (European Launch Developing Organisation, предшественник ЕКА), Австралией.

Имел четыре СК, с которых производились пуски высотных ракет Black Knite и лёгких носителей Black Arrow (первая и единственная британская РН, в единственном успешном космическом запуске 28 октября 1971 года на орбиту выведен первый английский спутник Prospero), Redstone (29 ноября 1967 года на орбиту выведен первый австралийский спутник WRESAT) и Europa-1 (удачных орбитальных пусков не было).

Полигон имеет трассы полёта для запуска спутников на орбиту наклонением 82-84°, но с июля 1976 года по решению правительства Австралии закрыт как нерентабельный (оборудование законсервировано и частично продано в Индию).


Рисунок 8 - Схема Космодрома Вумера

3. Расчетная часть


.1 Расчет массы и вертикального взлета ракеты


Требуется вывести искусственный спутник Земли массой т на круговую орбиту высотой 250 км. Располагаемый двигатель имеет удельный импульс м/c. Коэффициент - это значит, что масса конструкции составляет 10 % от массы заправленной ракеты (ступени). Определим массу ракеты-носителя .

Первая космическая скорость для выбранной орбиты составляет 7759,4 м/с, к которой добавляются предполагаемые потери от гравитации 600 м/c (это, как можно видеть, меньше, чем потери, приведённые в таблице 1, но и орбита, которую предстоит достичь - вдвое ниже), характеристическая скорость, таким образом, составит м/c (остальными потерями в первом приближении можно пренебречь). При таких параметрах величина. Неравенство (4), очевидно, не выполняется, следовательно, одноступенчатой ракетой при данных условиях достижение поставленной цели невозможно.

Расчёт для двуступенчатой ракеты.

М/c. На этот раз

для 2-й ступени получаем:




полная масса 1-й ступени составляет т;

общая масса двуступенчатой ракеты с полезным грузом составит т.

Аналогичным образом выполняются расчёты для бо?льшего количества ступеней. В результате получаем:

Стартовая масса трёхступенчатой ракеты составит т.

Четырёхступенчатой - т.

Пятиступенчатой - т.

На этом примере видно, как оправдывается многоступенчатость в ракетостроении - при той же конечной скорости ракета с бо?льшим числом ступеней имеет меньшую массу.

Заключение


В данной курсовой работе мы рассмотрели назначения, структуру, технологии, а так же характеристики основных Космодромов в мире.

При рассмотрении структуры космодромов мы разобрали такие характеристики космодрома как технический комплекс космодрома, стартовый комплекс космодрома, командно-измерительный комплекс космодрома, посадочный комплекс космодрома, а так же обеспечение безопасности работ на космодроме. Подробно разобрали каждые объекты и службы космодромов и рассмотрели технические характеристики космодромов.

Рассмотрели характеристики основных космодромов в мире. Космодромов в мире насчитывается более двух десятков. Все они имеют схожую структуру и различаются лишь деталями конструкции стартовых комплексов. На размещение космодромов в конкретных точках земной поверхности влияют несколько факторов. Одним из самых важных является баллистика полета. Дело в том, что с минимальными энергетическими затратами космический аппарат (КА) выводится на орбиту, наклонение

которой соответствует географической широте космодрома. Наиболее критична широта космодрома при выведении на геостационарные орбиты, лежащие в плоскости экватора. На них размещают спутники связи и ретрансляторы телепередач, то есть прежде всего коммерческие КА. Космодром для запуска геостационарных спутников должен располагаться в более низких широтах.

В проектной части мы произвели расчёт масс для двуступенчатой ракеты.

Расчёт масс для двуступенчатой ракеты.

Разделим пополам характеристическую скорость, что составит характеристическую скорость для каждой из ступеней двуступенчатой ракеты. м/c. На этот раз , что удовлетворяет критерию достижимости (4), и, подставляя в формулы (3) и (2) значения,

для 2-й ступени получаем:



полная масса 2-й ступени составляет т.

Для 1-й ступени к массе полезной нагрузки добавляется полная масса 2-й ступени, и после соответствующей подстановки получаем:



Следует отметить, что эти результаты получены в предположении, что коэффициент конструктивного совершенства ракеты остаётся постоянным, независимо от количества ступеней. Более тщательное рассмотрение показывает, что это - сильное упрощение. Ступени соединяются между собой специальными секциями -переходниками - несущими конструкциями, каждая из которых должна выдерживать суммарный вес всех последующих ступеней, помноженный на максимальное значение перегрузки , которую испытывает ракета на всех участках полёта, на которых переходник входит в состав ракеты. С увеличением числа ступеней их суммарная масса уменьшается, в то время как количество и суммарная масса переходников возрастают, что ведёт к снижению коэффициента, а, вместе с ним, и положительного эффекта многоступенчатости . В современной практике ракетостроения более четырёх ступеней, как правило, не делается.

Такого рода расчёты выполняются не только на первом этапе проектирования - при выборе варианта компоновки ракеты, но и на последующих стадиях проектирования, по мере детализации конструкции, формула Циолковского постоянно используется при поверочных расчётах, когда характеристические скорости пересчитываются, с учётом сложившихся из конкретных деталей соотношений начальной и конечной массы ракеты (ступени), конкретных характеристик двигательной установки, уточнения потерь скорости после расчёта программы полёта на активном участке , и т. д., чтобы контролировать достижение ракетой заданной скорости.

Список литературы


1. Левантовский В.И. Механика космического полета в элементарном изложении.-М.:Наука,1980.

Новости космонавтики. Ежемесячный журнал.

Эльясберг П.Е. Введение в теорию полета ИСЗ.-М.:Наука,1965.

Балк М.Б. Элементы динамики космического полета.-М.:Наука,1965.

Белецкий В.В. Очерки о движении космических тел.-М.:Наука,1972.

Основы теории полета КА /Под ред. Нариманова Г.С.

Полет КА: Примеры и задачи: Справочник /Ю.Ф.Авдеев, А.И.Беляев, А.В.Брыков и др.-М.:Машиностроение,1970.

Космонавтика: энциклопедия /Главный редактор В.П.Глушко.-М.:Советская энциклопедия,1985.

Авдеев Ю.Ф. Космос, баллистика, человек. - М.:Советское радио,1978.


Приложение


Расчет вертикального запуска ракеты


Рассмотрим на примере ракеты Союз расчет вертикального взлета ракеты рассчитав такие значения как1 - время полёта, расчитывается прибавлением t1 к предыдущем значению. M1 - полная масса ракеты в начале итерации, берётся из данных или из M2 предыдущей итерации (строки). V1 - скорость ракеты в начале, берётся из данных или из V2 предыдущей итерации. S1 - высота полёта. берётся из данных или вычисляется путём прибавления к предыдущему значению S1 скорости V1 умноженной на dTime1. Ft1 - тяга на данной высоте (S1). Вычисляется путём вычитания из тяги в вакууме разницы между двумя тягами домноженной на процент поверхностной плотности воздуха (см. ниже таблицу плотности). Ft1 = Ft1v -(Ft1v -Ft1m) * Ro. I1 - удельный импульс на данной высоте (S1). Вычисляется путём вычитания из импульса в вакууме разницы между двумя импульсами домноженной на процент поверхностной плотности воздуха (см. ниже таблицу плотности). I1 = I1v -(I1v -I1m) * Ro. a1 - ускорение приобретаемое ракетой за счёт двигателей. Вычисляется делением тяги двигателей на массу ракеты. a2 - ускорение приобретаемое ракетой за счёт действия сил гравитации. Вычисляется по закону всемироного тяготения.

Гравитационная постоянная умножается на массу планеты и делится на квадрат расстояния от ракеты до центра планеты: a2 = GravPost*Mpl/(Rpl+S1)2. a3 - полное ускорение, Вычисляется путём сложения ускорений получаемых от двигателей и гравитации a3 = a1 + a2. v2 - скорость в конце итерации. Вычисляется путём сложения скорости в начале итерации и полного ускорения умноженного на промежуток времени v2 = v1 + a3 * t1. Mt - расход топлива. Вычисляется путём умножения тяги двигателя на промежуток времени и деления на удельный импульс: Ft1 t1/I1. M2 - полная масса ракеты в конце итерации, Вычисляется путём вычитания расхода топлива из массы ракеты в начале итерации. M2 = M1 - Mt.


Таблица 2 Исходные данные:

Первая ступеньМасса пустой ступени M1r, кг.Масса топлива в ступени M1t, кг.Удельный импульс двигателя на уровне моря I1m, м./сек.Удельный импульс двигателя в вакууме I1v, м./сек.Тяга двигателя на уровне моря Ft1m, кНТяга двигателя в вакууме Ft1v, кН Вторая ступеньОбщий вес ракеты M0, кг.Время одной итерации t1, сек.Предел итераций (от зависаний) ItCnt1,Масса планеты (Земли) Mpl, кг.Радиус планеты Rpl, км.


Таблица. Расчет вертикального взлета ракеты


Зависимость плотности воздуха от высоты. Таблица международной стан. атм. (МСА)Высота над уровнем моря, кмПлотность, кг/м3Плотность, % от уровня моря01.250100%11.13490.7%21.02782.2%30.92774.2%40.83666.9%50.75160.1%60.67353.8%70.60148.1%80.53642.8%90.47538.0%100.42133.7%110.37129.7%120.31725.4%130.27121.7%140.23118.5%150.19715.8%160.16913.5%170.14411.5%180.1239.8%190.1058.4%200.0907.2%210.0776.1%220.0655.2%230.0564.5%240.0483.8%250.0413.3%300.0181.44%350.0080.67%400.0040.32%450.0020.16%500.0010.09%600.00030970.02477%700.000082850.006628%800.000018460.0014768%900.0000034180.00027344%1000.00000055500.00004440%1200.000000024400.000001952%

Рисунок 10- График зависимости плотности воздуха от высоты над уровнем моря


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.



Поделиться