Скачать презентацию тему правильные многогранники. Правильные многогранники. Элементы симметрии куба

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Многогранник – это такое тело, поверхность которого состоит из конечного числа плоских многоугольников.

Правильные многогранники

Сколько существует правильных многогранников? - Как они определяются, какими свойствами обладают? -Где встречаются, имеют ли практическое применение?

Выпуклый многогранник называется правильным, если все его грани - равные правильные многоугольники и в каждой его вершине сходится одно и то же число ребер.

«эдра» - грань «тетра» - четыре гекса» - шесть «окта» - восемь «додека» - двенадцать «икоса» - двадцать Названия этих многогранников пришли из Древней Греции и в них указано число граней.

Название правильного многогранника Вид грани Число вершин ребер граней граней, сходящихся в одной вершине Тетраэдр Правильный треугольник 4 6 4 3 Октаэдр Правильный треугольник 6 12 8 4 Икосаэдр Правильный треугольник 12 30 20 5 Куб (гексаэдр) Квадрат 8 12 6 3 Додекаэдр Правильный пятиугольник 20 30 12 3 Данные о правильных многогранниках

Вопрос (проблема): Сколько существует правильных многогранников? Как установить их количество?

α n = (180 °(n -2)) : n При каждой вершине многогранника не меньше трех плоских углов, и их сумма должна быть меньше 360 ° . Форма граней Количество граней при одной вершине Сумма плоских углов при вершине многогранника Вывод о существовании многогранника α = 3 α = 4 α = 5 α = 6 α = 3 α = 4 α = 3 α = 4 α = 3

Л. Кэрролл

Великие математики древности Архимед Евклид Пифагор

Подробно описал свойства правильных многогранников древнегреческий ученый Платон. Именно поэтому правильные многогранники называются тела Платона

тетраэдр - огонь куб - земля октаэдр - воздух икосаэдр - вода додекаэдр - вселенная

Многогранники в науках о космосе и земле

Иоганн Кеплер (1571-1630) – немецкий астроном и математик. Один из создателей современной астрономии - открыл законы движения планет (законы Кеплера)

кубок Кеплера Космический

" Экосаэдро - додекаэдровая структура Земли "

Многогранники в искусстве и архитектуре

Альбрехт Дюрер (1471-1528) «Меланхолия»

Сальвадор Дали «Тайная Вечеря»

Современные архитектурные сооружения в виде многогранников

Александрийский маяк

Кирпичный многогранник швейцарского архитектора

Современное здание в Англии

Многогранники в природе ФЕОДАРИЯ

Пирит (сернистый колчедан) Монокристалл алюмокалиевых квасцов Кристаллы красной медной руды ПРИРОДНЫЕ КРИСТАЛЛЫ

Поваренная соль состоит из кристаллов в форме куба Минерал сильвин также имеет кристаллическую решетку в форме куба. Молекулы воды имеют форму тетраэдра. Минерал куприт образует кристаллы в форме октаэдров. Кристаллы пирита имеют форму додекаэдра

Алмаз В форме октаэдра кристаллизуются алмаз, хлорид натрия, флюорит, оливин и другие вещества.

Исторически первой формой огранки, появившейся в XIV веке стал октаэдр. Алмаз Шах Масса алмаза 88,7 карата

Задача Английская королева дала указание сделать огранку вдоль ребер алмаза золотой нитью. Но огранка не была сделана, так как ювелир не сумел рассчитать максимальную длину золотой нити, а сам алмаз ему не показали. Ювелиру были сообщены следующие данные: число вершин В=54, число граней Г=48, длина наибольшего ребра L= 4мм. Найти максимальную длину золотой нити.

Правильный многогранник Число Граней Вершин Рёбер Тетраэдр 4 4 6 Куб 6 8 12 Октаэдр 8 6 12 Додекаэдр 12 20 30 Икосаэдр 20 12 30 Исследовательская работа «Формула Эйлера»

Теорема Эйлера. Для любого выпуклого многогранника В + Г - 2 = Р где В – число вершин, Г – число граней, Р – число ребер этого многогранника.

ФИЗМИНУТКА!

Задача Найдите угол между двумя ребрами правильного октаэдра, которые имеют общую вершину, но не принадлежат одной грани.

Задача Найти высоту правильного тетраэдра с ребром 12 см.

Кристалл имеет форму октаэдра, состоящего из двух правильных пирамид с общим основанием, ребро основания пирамиды 6 см. высота октаэдра 8 см. Найдите площадь боковой поверхности кристалла

Площадь поверхности Тетраэдр Икосаэдр Додекаэдр Гексаэдр Октаэдр

Задание на дом: mnogogranniki.ru Пользуясь развертками изготовить модели 1-го правильного многогранника со стороной 15 см, 1-го полуправильного многогранника

Спасибо за работу!



Многогранник поверхность, составленная из многоугольников и ограничивающих некоторое геометрическое тело. Многогранники бывают выпуклыми и не выпуклыми многоугольников Многогранник называется выпуклым, если он расположен по одну сторону плоскости каждого многоугольника на его поверхности








Октаэдр Окта́эдр (греч. οκτάεδρον, от греч. οκτώ, «восемь» и греч.έδρα «основание») один из пяти выпуклых правильных многогранников, так называемых Платоновых тел.греч. правильных многогранников Платоновых Октаэдр имеет 8 треугольных граней, 12 рёбер, 6 вершин, в каждой его вершине сходятся 4 ребра.




Икосаэдр Икоса́эдр (от греч. εικοσάς двадцать; -εδρον грань, лицо, основание) правильный выпуклый многогранник, двадцатигранник, одно из Платоновых тел. Каждая из 20 граней представляет собой равносторонний треугольник. Число ребер равно 30, число вершин 12. Икосаэдр имеет 59 звёздчатых форм.греч.Платоновых телтреугольникзвёздчатых форм


Додекаэдр Додека́эдр (от греч. δώδεκα двенадцать и εδρον грань),двенадцатигранник правильный многогранник, составленный из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трёх правильных пятиугольников.греч.правильный многогранник правильных пятиугольников вершина Таким образом, додекаэдр имеет 12 граней (пятиугольных), 30 рёбер и 20 вершин (в каждой сходятся 3 ребра). Сумма плоских углов при каждой из 20 вершин равна 324°.углов











«Полуправильные многогранники» - Пирамида. Правильные многогранники еще называют Платоновыми телами. Курносый додекаэдр. Тетраэдр. Икосаэдр. Куб. Правильные. Ромбоикосододэкаэдр. Перейти к следующему вопросу. Вспомним. Обучающая программа. Управляющие кнопки. Вы дали неверный ответ. Курносый куб. К какому из типов многогранников относится следующая формула V=a*b*c:

«Правильные многогранники в жизни» - История. Кусудама – бумажный цветочный шар. Евклид. Здание без углов. Примеры. Цели. Иоганн Кеплер. Достопримечательность Белоруссии. Правильные многогранники. Необычные построения. Новое чудо света. Многогранники в искусстве. Многогранники и кристаллы. Применение правильных многогранников в архитектуре.

«Виды правильных многогранников» - Механические головоломки. Египетские Пирамиды. Правильные многогранники и природа. Ученые, внесшие вклад в изучение правильных многогранников. Александрийский Маяк. Площадь икосаэдра. Основные формулы. Пифагор. Галикарнасский мавзолей. Многогранники в природе. Гексаэдр. Октаэдр. Площадь поверхности додекаэдра.

«Применение правильных многогранников» - Многогранники в искусстве. Использование в жизни. Многогранники в природе. Кеплер. Мир правильных многогранников. Группа «Историки». Евклид. Многогранники в математике. Архимед. Теорема Эйлера. История возникновения правильных многогранников. Заключение. Многогранники в архитектуре. Взаимосвязь «золотого сечения» и происхождения многогранников.

«Правильные многогранники в геометрии» - В кристаллографии существует раздел, который называется «геометрическая кристаллография». Лучи кристалла обуславливают икосаэдро-додекаэрическую структуру Земли, Гипотеза В.Макарова и В.Морозова: Тетраэдр-огонь. В местах пересечения рёбер располагаются очаги древних культур и цивилизаций, Многогранники вокруг нас.

«Симметрия правильных многогранников» - Правильный додекаэдр. Каждая вершина додекаэдра является вершиной трех правильных пятиугольников. Симметрия в искусстве. Тетраэдр не имеет центра симметрии, но имеет 3 оси симметрии и 6 плоскостей симметрии. Церковь Покрова Богородицы на Нерли. составлен из шести квадратов. Следовательно, сумма плоских углов при каждой вершине равна 240°.

Всего в теме 15 презентаций


















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока:

  • ознакомить учащихся с понятием правильного многогранника и с пятью типами правильных многогранников,
  • способствовать формированию навыков использования компьютерных технологий при изучении нового материала
  • способствовать развитию самостоятельной деятельности, умению сравнивать, обобщать.

Оснащение урока:

  • Мультимедийный проектор, экран, компьютеры
  • Презентация «Правильные многогранники»
  • Модели правильных многогранников
  • Карточки – задания «Задачи по готовым чертежам» –Приложение 1
  • Таблица «Правильные многогранники»
  • Раздаточный материал «Кроссворд» – Приложение 2

ХОД УРОКА

1. Организационный момент (5 мин.)

Целевая установка урока (Сообщение темы, цели урока и порядка работы)
Раздел о правильных многогранниках носит описательный характер, на его изучение отводится один урок. Материал о правильных многогранниках существенно дополняет и логически завершает раздел «Многогранники». Фактически здесь продолжается классификация многогранников; из выпуклых многогранников выделяются правильные.

2. Изучение нового материала (15 мин.)

Учителю необходимо организовать работу так, чтобы новое понятие «правильный многогранник» формировалось на основе уже сложившихся представлений обучающихся о правильных призмах, пирамидах и правильных многоугольниках.
Существование только пяти видов правильных многогранников сообщается без доказательства. Доказательство этой теоремы можно рассмотреть на занятиях соответствующего факультативного курса.

Презентация «Правильные многогранники»

Презентация подготовлена по теме "Правильные многогранники" для учащихся 10-11 классов общеобразовательных школ и учащихся профессионально-технических училищ. В материале предлагается историческая справка о правильных многогранниках, их особенностях, свойствах. Приводятся примеры из окружающего мира, где можно встретить многогранники. Презентацию можно использовать на уроках геометрии, элективных курсах, а также на внеклассных мероприятиях по математике.

Использование презентации на уроке позволяет экономить время, сделать изучение материала более интересным, красочным, необычным.

Слайды 2, 3 – Вводится определение правильного многогранника и осуществляется самоконтроль обучающимися усвоения определения.
«Правильных многогранников вызывающе мало, – написал когда-то Л.Кэрролл, – но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук».

Слайды 4-9 – Сообщается о существовании только пяти видов правильных многогранников и для каждого из многогранников представлены его рисунок, объемное изображение, развертка поверхности и основные свойства.
С древних времен многогранники привлекают внимание людей своей красотой, совершенством и гармонией.

Слайд 10 – Историческая справка - сведения из истории о Платоне и правильных многогранниках.

Слайд 11 – Элементы правильных многогранников, зависимость между элементами. Теорема Эйлера.

Слайд15 – Леонард Эйлер

Особый интерес к правильным многогранникам связан с красотой и совершенством их форм. Они довольно часто встречаются в природе.

Слайды 12, 13 – Правильные многогранники в природе, в частности, в кристаллографии.

Слайд 14 – Заключение и домашнее задание
После изучения нового материала осуществляется проверка усвоения материала с использованием каркасных и плоскостных моделей многогранников и таблицы «Правильные многогранники». После чего учащиеся приступают к решению задач по готовым чертежам.

3. Решение задач (17 мин.) –Приложение 1

№1. Найдите высоту правильного тетраэдра с ребром 10 см.

Дано : ABCД – правильный тетраэдр,
AВ = 10 см

Найти : высоту тетраэдра

Решение .

1) AF – медиана ΔABС, значит ВF = ______

2) Из ΔABF по теореме _______ найдем АF

AF 2 = AB 2 – BF 2

3) О делит отрезок AF в отношении 2:1, поэтому АО = _____________________

4) Из ΔADO по теореме Пифагора найдем DO

DO 2 = ____________
DO = ____________

Ответ: ______см

№2. Решите задачу, используя план решения

Кристалл имеет форму октаэдра, состоящего из двух правильных пирамид с общим основанием, ребро основания пирамиды 6 см. Высота октаэдра 14 см. Найдите площадь боковой поверхности кристалла.

Решение.

1) Sбок = 2 Sпир = p ∙ SK (где SK – апофема, p – полупериметр ABCD)

2) Находим ОК _________________________

3) Находим SO ________________________
______________________________________

4) Находим SK ________________________
______________________________________

5) Вычисляем Sбок ______________________
______________________________________

№3. Докажите, что концы двух непараллельных диагоналей противолежащих граней куба являются вершинами тетраэдра.

4. Дополнительное задание.

Кроссворд (работа в парах) Приложение 2
В зависимости от уровня подготовленности класса или группы обучающихся можно предложить им дополнительное задание в виде кроссворда. Если класс или группа имеют низкие математические способности, то кроссворд можно предложить к решению на следующем уроке как повторение ранее изученного материала.

5. Итоги урока (5 мин.)

Итог урока предусматривает обсуждение с учащимися в конце урока не только успешности реализации поставленных целей, но и что понравилось (не понравилось) и почему, что лично для него было полезным, что бы ему хотелось повторить, что изменить при дальнейшей работе.

6. Домашнее задание (3 мин.)

Сделать развертки поверхностей правильных многогранников (правильные тетраэдр, куб, октаэдр).
Ответить на вопросы №№ 30, 31 стр. 243 , Погорелов А. В. «Геометрия 10-11»
Решить задачи №57 стр. 249, №70 стр.248

Домашнее задание включает в себя решение задач и построение разверток и моделей правильных многогранников. Учащиеся сами выбирают, какие из рассмотренных многогранников они будут выполнять (можно «разбить» класс или группу на пять групп по количеству типов правильных многогранников и каждой группе предложить изготовление только одного из правильных многогранников).



Поделиться